找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Modeling and Processing - GMP 2006; 4th International Co Myung-Soo Kim,Kenji Shimada Conference proceedings 2006 Springer-Verlag

[復(fù)制鏈接]
樓主: architect
31#
發(fā)表于 2025-3-26 23:19:58 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:42 | 只看該作者
Implementierung und Einsatz der Modelle,can be projected to a single plane so that the projections do not have any mutual or self intersections, and so that one projection completely encloses the other. We describe an algorithm that generates a temporal deformation between the input curves, one which can be thought of as sweeping a surfac
33#
發(fā)表于 2025-3-27 05:58:28 | 只看該作者
34#
發(fā)表于 2025-3-27 12:15:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:38:47 | 只看該作者
36#
發(fā)表于 2025-3-27 18:17:46 | 只看該作者
Automatic Extraction of Surface Structures in Digital Shape Reconstructionf user assistance. We present techniques to automate this process and create a digital model that meets the requirements in mechanical engineering CAD/CAM/CAE. Such a CAD model is composed of a hierarchy of different types of surfaces, including primary surfaces, connecting features and vertex blend
37#
發(fā)表于 2025-3-27 23:04:59 | 只看該作者
Ensembles for Normal and Surface Reconstructionsadvantages are the speed and, given a reasonably good initial input, the high quality of the reconstructed surfaces. Nevertheless, their deterministic nature may hinder them from effectively handling incomplete data with noise and outliers. In our previous work [1], we applied a statistical techniqu
38#
發(fā)表于 2025-3-28 02:47:43 | 只看該作者
39#
發(fā)表于 2025-3-28 07:19:09 | 只看該作者
40#
發(fā)表于 2025-3-28 12:45:44 | 只看該作者
Geometric Accuracy Analysis for Discrete Surface Approximationted from sample points on the surface. A fundamental problem is to design rigorous algorithms to guarantee the geometric approximation accuracy by controlling the sampling density..This theoretic work gives explicit formula to the bounds of Hausdorff distance, normal distance and Riemannian metric d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辰溪县| 绍兴县| 江川县| 基隆市| 济阳县| 凤台县| 遂溪县| 汕头市| 万山特区| 邻水| 刚察县| 固安县| 克什克腾旗| 徐州市| 辰溪县| 岐山县| 元谋县| 德昌县| 香河县| 清新县| 崇文区| 绥阳县| 佛坪县| 巴彦县| 平武县| 遵义市| 乐陵市| 张掖市| 紫云| 广汉市| 吉木萨尔县| 大丰市| 鲁山县| 隆安县| 江门市| 游戏| 湖北省| 太白县| 探索| 视频| 崇义县|