找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVI; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2019 Spri

[復(fù)制鏈接]
樓主: HAVEN
21#
發(fā)表于 2025-3-25 04:44:19 | 只看該作者
On Noncommutative Geometry of the Standard Model: Fermion Multiplet as Internal FormsWe unveil the geometric nature of the multiplet of fundamental fermions in the Standard Model of fundamental particles as a noncommutative analogue of de Rham forms on the internal finite quantum space.
22#
發(fā)表于 2025-3-25 09:41:07 | 只看該作者
23#
發(fā)表于 2025-3-25 14:18:56 | 只看該作者
Dirac Operator on a Noncommutative Toeplitz TorusWe construct a 1.-summable regular even spectral triple for a noncommutative torus defined by a C.-subalgebra of the Toeplitz algebra.
24#
發(fā)表于 2025-3-25 17:02:37 | 只看該作者
Field Quantization in the Presence of External FieldsBy quantizing a general field theory in the presence of anisotropic media, a general formula for fluctuation-induced free energy is obtained.
25#
發(fā)表于 2025-3-25 23:24:05 | 只看該作者
The Reasonable Effectiveness of Mathematical Deformation Theory in PhysicsThis is a brief reminder, with extensions, from a different angle and for a less specialized audience, of my presentation at WGMP32 in July 2013, to which I refer for more details on the topics hinted at in the title, mainly deformation theory applied to quantization and symmetries (of elementary particles).
26#
發(fā)表于 2025-3-26 03:35:41 | 只看該作者
27#
發(fā)表于 2025-3-26 04:20:44 | 只看該作者
28#
發(fā)表于 2025-3-26 10:19:30 | 只看該作者
29#
發(fā)表于 2025-3-26 13:58:30 | 只看該作者
,General Equations of?Gas Motion,tor . with the smearing realized through .. The relevance of the smearing is illustrated in connection with the problem of the joint measurability of two quantum observables. Also the connections with phase space quantum mechanics is outlined.
30#
發(fā)表于 2025-3-26 17:34:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 正安县| 弋阳县| 莱西市| 西乡县| 平安县| 南涧| 元朗区| 贵港市| 贵阳市| 镶黄旗| 新河县| 香格里拉县| 新源县| 三台县| 城步| 铜梁县| 顺平县| 乐业县| 唐海县| 都昌县| 隆林| 新建县| 历史| 巩义市| 德兴市| 勐海县| 晋宁县| 金塔县| 麦盖提县| 温州市| 永德县| 南和县| 皋兰县| 白朗县| 甘谷县| 甘肃省| 仁化县| 黔西县| 班戈县| 介休市|