找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXV; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2018 Sprin

[復(fù)制鏈接]
查看: 34503|回復(fù): 60
樓主
發(fā)表于 2025-3-21 18:56:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometric Methods in Physics XXXV
副標(biāo)題Workshop and Summer
編輯Piotr Kielanowski,Anatol Odzijewicz,Emma Previato
視頻videohttp://file.papertrans.cn/384/383555/383555.mp4
概述Contains presentations from the special session on Integrability and Geometry
叢書(shū)名稱(chēng)Trends in Mathematics
圖書(shū)封面Titlebook: Geometric Methods in Physics XXXV; Workshop and Summer  Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2018 Sprin
描述.This book features a selection of articles based on the XXXV Bia?owie?a Workshop on Geometric Methods in Physics, 2016. The series of Bia?owie?a workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session? "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field.. .Traditionally, the Bia?owie?a Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career? researchers, and the book also includes extended abstracts of the lecture series..
出版日期Conference proceedings 2018
關(guān)鍵詞mathematical physics; integrable systems; quantization; Lie groupoids and algebroids; integral operators
版次1
doihttps://doi.org/10.1007/978-3-319-63594-1
isbn_softcover978-3-319-87589-7
isbn_ebook978-3-319-63594-1Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書(shū)目名稱(chēng)Geometric Methods in Physics XXXV影響因子(影響力)




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV被引頻次




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV年度引用




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV讀者反饋




書(shū)目名稱(chēng)Geometric Methods in Physics XXXV讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:44:17 | 只看該作者
The Triple Reduced Product and Hamiltonian FlowsWe outline a method to find a Hamiltonian function on this S. (with its non-standard symplectic form) which is the moment map for a circle action. In other words the period of the Hamiltonian flow is constant except at fixed points.
板凳
發(fā)表于 2025-3-22 03:23:07 | 只看該作者
An Algebraic Background for Hierarchies of PDE in Dimension (2|1)ationary Schr?dinger type operators [6]. We shall discuss here the construction of an algebra of pseudodifferential symbols in dimension (2|1); that algebra generalizes the one for d = 1, used in construction of hierarchies from isospectral deformations of stationary Schr?dinger type operators.
地板
發(fā)表于 2025-3-22 05:41:30 | 只看該作者
Lagrangian Manifolds and Maslov Indices Corresponding to the Spectral Series of the Schr?dinger Operalso the effect of the jump of the Maslov index while passing through the critical value of this parameter. These results were obtained in a number of joint papers with T. Filatova, T. Ratiu and A. Suleimanova.
5#
發(fā)表于 2025-3-22 11:53:50 | 只看該作者
Electronic Properties of Graphene Nanoribbons in a Uniform Magnetic Fieldtronic spectrum was investigated. For this purpose, the usual Schr¨odinger equation was replaced by the Harper equations which contain the influence of the magnetic field. The results show the fractal structure of the dependence of the energy levels on the magnetic field.
6#
發(fā)表于 2025-3-22 12:59:47 | 只看該作者
7#
發(fā)表于 2025-3-22 17:22:10 | 只看該作者
Particle Kinetics: Force and Acceleration,We outline a method to find a Hamiltonian function on this S. (with its non-standard symplectic form) which is the moment map for a circle action. In other words the period of the Hamiltonian flow is constant except at fixed points.
8#
發(fā)表于 2025-3-22 21:46:56 | 只看該作者
Explaining Territorial Conflict,ationary Schr?dinger type operators [6]. We shall discuss here the construction of an algebra of pseudodifferential symbols in dimension (2|1); that algebra generalizes the one for d = 1, used in construction of hierarchies from isospectral deformations of stationary Schr?dinger type operators.
9#
發(fā)表于 2025-3-23 02:56:39 | 只看該作者
10#
發(fā)表于 2025-3-23 05:59:09 | 只看該作者
Kinetics of Oxidative Decarboxylasestronic spectrum was investigated. For this purpose, the usual Schr¨odinger equation was replaced by the Harper equations which contain the influence of the magnetic field. The results show the fractal structure of the dependence of the energy levels on the magnetic field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨野县| 南昌市| 宁都县| 敖汉旗| 盐山县| 永德县| 额敏县| 崇信县| 佛冈县| 永嘉县| 广宗县| 松潘县| 林口县| 西宁市| 卢湾区| 桐柏县| 玛纳斯县| 泸水县| 扬州市| 丘北县| 黄陵县| 宜兴市| 望江县| 贵德县| 山东| 丰镇市| 磴口县| 黔西| 余江县| 襄城县| 巴楚县| 甘谷县| 黄山市| 金平| 文山县| 同德县| 大余县| 海原县| 南陵县| 兰溪市| 镇安县|