找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXIX; Workshop, Bia?ystok, Piotr Kielanowski,Alina Dobrogowska,Tomasz Golińsk Conference proceedings 2023 The

[復(fù)制鏈接]
樓主: Tyler
31#
發(fā)表于 2025-3-26 23:29:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:12:12 | 只看該作者
Dynamics of Electromechanical Systems, associated with two Killing vectors. In addition, there are hidden symmetries related to the Killing tensors. Building on the explicit form of the conformal Killing–Yano tensor for the PD metric with conformal factor, we determine the associated conformal Killing tensors, the conformal Killing and
33#
發(fā)表于 2025-3-27 07:30:28 | 只看該作者
https://doi.org/10.1007/978-981-10-2603-4written as a linear combination of two different algebroid structures. By specifying vector fields . and .? on a given manifold, it is possible to construct a family of Lie algebroids determined by these vector fields. Specializing the Lie algebroid to the case of a Lie algebra on a linear space .?,
34#
發(fā)表于 2025-3-27 12:18:14 | 只看該作者
35#
發(fā)表于 2025-3-27 16:42:41 | 只看該作者
978-3-031-30286-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
36#
發(fā)表于 2025-3-27 21:28:15 | 只看該作者
Geometric Methods in Physics XXXIX978-3-031-30284-8Series ISSN 2297-0215 Series E-ISSN 2297-024X
37#
發(fā)表于 2025-3-28 00:12:17 | 只看該作者
https://doi.org/10.1007/978-3-031-30284-8Quantization; Classical field theory; Quantum field theory; Infinite-dimensional groups; Integrable syst
38#
發(fā)表于 2025-3-28 05:22:17 | 只看該作者
Piotr Kielanowski,Alina Dobrogowska,Tomasz GolińskProvides an overview of cutting-edge research in geometry, analysis, and a wide variety of other areas.Offers insight into recent developments at the intersection of mathematics and physics.Collects p
39#
發(fā)表于 2025-3-28 07:40:19 | 只看該作者
40#
發(fā)表于 2025-3-28 12:04:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 南投县| 柳河县| 汾阳市| 兴业县| 饶平县| 南江县| 平塘县| 崇州市| 信丰县| 厦门市| 云龙县| 兰西县| 天全县| 余江县| 阳原县| 云浮市| 横山县| 黄山市| 清水河县| 永胜县| 齐齐哈尔市| 乌拉特中旗| 都江堰市| 通化县| 万安县| 紫金县| 昭觉县| 吴桥县| 广宁县| 榆中县| 广灵县| 电白县| 津市市| 樟树市| 上虞市| 马山县| 始兴县| 江门市| 安丘市| 泰安市|