找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Inverse Problems and PDE Control; Christopher B. Croke,Michael S. Vogelius,Irena Las Conference proceedings 2004 Spri

[復制鏈接]
樓主: 黑暗社會
31#
發(fā)表于 2025-3-26 21:26:47 | 只看該作者
,Inverse Resonance Problem for ?2-Symmetric Analytic Obstacles in the Plane,les. It is the analogue for exterior domains of the proof that a mirror symmetric bounded simply connected analytic plane domain is determined by its Dirichlet eigenvalues. The proof uses ‘interior/exterior duality’ to simplify the argument.
32#
發(fā)表于 2025-3-27 02:20:18 | 只看該作者
Geometric Methods in Inverse Problems and PDE Control
33#
發(fā)表于 2025-3-27 07:51:22 | 只看該作者
34#
發(fā)表于 2025-3-27 11:54:14 | 只看該作者
The IMA Volumes in Mathematics and its Applications383546.jpg
35#
發(fā)表于 2025-3-27 16:31:07 | 只看該作者
Ray Transform and Some Rigidity Problems for Riemannian Metrics,ely related to inverse problems for kinetic and linear transport equations that are discussed in Section 3. In Section 4 we present some results on the nonlinear boundary rigidity problem whose derivation is based on stability estimates for the ray transform. Section 5 is devoted to the periodic ver
36#
發(fā)表于 2025-3-27 18:35:25 | 只看該作者
37#
發(fā)表于 2025-3-27 23:20:31 | 只看該作者
38#
發(fā)表于 2025-3-28 05:13:39 | 只看該作者
0940-6573 ons, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef- ficient problems for partial differential equations ar978-1-4419-2341-7978-1-4684-9375-7Series ISSN 0940-6573 Series E-ISSN 2198-3224
39#
發(fā)表于 2025-3-28 06:54:36 | 只看該作者
40#
發(fā)表于 2025-3-28 10:35:00 | 只看該作者
Rigidity Theorems in Riemannian Geometry,int will be the boundary rigidity and conjugacy rigidity problems. These problems are connected to many other problems (Mostow-Margulis type rigidity, isopectral problems, isoperimetric inequalities etc.). We will restrict our attention to those results that have a direct connection to the boundary
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
屏东县| 皋兰县| 尚志市| 旅游| 富阳市| 城步| 西城区| 清苑县| 大方县| 乐至县| 宁远县| 东方市| 东宁县| 嘉义市| 镇平县| 互助| 呼玛县| 凌云县| 东丽区| 崇州市| 微博| 汾西县| 临朐县| 罗平县| 凌源市| 德庆县| 师宗县| 县级市| 芜湖县| 连南| 大埔区| 安泽县| 额尔古纳市| 乌恰县| 彰化县| 永和县| 碌曲县| 汉阴县| 莎车县| 买车| 张家川|