找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Inverse Problems and PDE Control; Christopher B. Croke,Michael S. Vogelius,Irena Las Conference proceedings 2004 Spri

[復(fù)制鏈接]
樓主: 黑暗社會
21#
發(fā)表于 2025-3-25 04:22:27 | 只看該作者
22#
發(fā)表于 2025-3-25 11:30:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:54:47 | 只看該作者
Norman H. Anderson,Margaret A. Armstrongint will be the boundary rigidity and conjugacy rigidity problems. These problems are connected to many other problems (Mostow-Margulis type rigidity, isopectral problems, isoperimetric inequalities etc.). We will restrict our attention to those results that have a direct connection to the boundary
24#
發(fā)表于 2025-3-25 18:35:08 | 只看該作者
25#
發(fā)表于 2025-3-25 21:04:06 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:23 | 只看該作者
Sayan Ray,Sanjoy Sanyal,Pulak Senguptae inverse problem of determining a metric of a Riemannian manifold (with boundary) from the dynamic Dirichlet-to-Neumann map associated with the wave equation. Although these results are very satisfactory it requires too much information. By just looking at the singularities of the dynamic Dirichlet
27#
發(fā)表于 2025-3-26 06:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:44 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:42 | 只看該作者
les. It is the analogue for exterior domains of the proof that a mirror symmetric bounded simply connected analytic plane domain is determined by its Dirichlet eigenvalues. The proof uses ‘interior/exterior duality’ to simplify the argument.
30#
發(fā)表于 2025-3-26 20:07:26 | 只看該作者
The Case for Differential Geometry in the Control of Single and Coupled PDEs: The Structural Acoustd as follows: we intend to provide a relatively updated survey (subject to space limitations) of results on . and . of certain general classes of single Partial Differential Equations as well as of classes of systems of coupled PDEs (in dimension strictly greater than one), that have become available in recent years ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏东市| 新津县| 全州县| 闵行区| 太仆寺旗| 县级市| 永城市| 龙口市| 大连市| 喜德县| 泰州市| 资兴市| 曲阳县| 义马市| 桐梓县| 灵丘县| 新野县| 黔西县| 宁夏| 当阳市| 贺兰县| 静安区| 武山县| 闸北区| 宁波市| 广元市| 二连浩特市| 沙河市| 郯城县| 百色市| 永平县| 鸡泽县| 阿图什市| 兰溪市| 镇赉县| 南康市| 永定县| 新晃| 宾川县| 文山县| 鄯善县|