找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Algebra and Number Theory; Fedor Bogomolov,Yuri Tschinkel Textbook 2005 Birkh?user Boston 2005 Area.Cohomology.Volume

[復(fù)制鏈接]
樓主: notable
21#
發(fā)表于 2025-3-25 04:11:51 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:39 | 只看該作者
Motivic approach to limit sheaves,We propose a motivic analog of limit mixed Hodge structures. Working in the context of triangulated categories of motivic objects on schemes we introduce and study a limit motive functor and a motivic vanishing cycle sheaf.
23#
發(fā)表于 2025-3-25 14:11:03 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:20:28 | 只看該作者
Durchführung von Miranda-Evaluierungen surfaces which are rigid, i.e., without nontrivial deformations, and which admit an unramified covering which is isomorphic to a product of curves of genus at least 2..In this case the moduli space of surfaces homeomorphic to the given surface consists either of a unique real point, or of a pair of
26#
發(fā)表于 2025-3-26 00:50:58 | 只看該作者
Grzegorz Domański,Yakov Kuzyakov,Karl Stahr for these moduli spaces can often be constructed using the techniques of Geometric Invariant Theory. In genus two, this boils down to the invariant theory of binary sextics, which was developed systematically in the 19th century.
27#
發(fā)表于 2025-3-26 07:30:37 | 只看該作者
https://doi.org/10.1007/978-3-030-75158-6 .(., ?) vs. .(., ?) flat connections and character varieties for curves, respectively. Several new results and conjectures and their relations to works of Hitchin, Gothen, Garsia-Haiman and Earl-Kirwan are explained. These use the representation theory of finite groups of Lie-type via the arithmeti
28#
發(fā)表于 2025-3-26 10:16:43 | 只看該作者
29#
發(fā)表于 2025-3-26 15:07:02 | 只看該作者
30#
發(fā)表于 2025-3-26 19:07:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合作市| 屏山县| 南陵县| 肥乡县| 卢湾区| 永丰县| 革吉县| 雷山县| 蕉岭县| 永登县| 米易县| 亳州市| 德令哈市| 保亭| 余庆县| 灵宝市| 皮山县| 高陵县| 三明市| 阿尔山市| 中西区| 犍为县| 满洲里市| 陈巴尔虎旗| 龙门县| 武威市| 武城县| 金塔县| 庆元县| 玛多县| 浙江省| 水城县| 临江市| 宣武区| 沅江市| 简阳市| 丰镇市| 灵川县| 邯郸市| 安远县| 镇宁|