找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Measure Theory and Real Analysis; Luigi Ambrosio Conference proceedings 2014 Scuola Normale Superiore Pisa 2014 Heisenberg group

[復(fù)制鏈接]
樓主: Awkward
11#
發(fā)表于 2025-3-23 12:11:13 | 只看該作者
https://doi.org/10.1007/978-88-7642-523-3Heisenberg group; Sobolev classes; regularity problem
12#
發(fā)表于 2025-3-23 16:48:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:55:45 | 只看該作者
14#
發(fā)表于 2025-3-24 00:55:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:52:06 | 只看該作者
Saeed Chehreh Chelgani,Ali Asimi Neisianicharacterization of abnormal extremals, that was recently obtained in collaboration with E. Le Donne, G. P. Leonardi and R. Monti, in terms of horizontal curves contained in certain algebraic varieties. Applications to the problem of geodesics’ regularity are provided.
16#
發(fā)表于 2025-3-24 06:47:16 | 只看該作者
17#
發(fā)表于 2025-3-24 11:21:16 | 只看該作者
The regularity problem for sub-Riemannian geodesics,characterization of abnormal extremals, that was recently obtained in collaboration with E. Le Donne, G. P. Leonardi and R. Monti, in terms of horizontal curves contained in certain algebraic varieties. Applications to the problem of geodesics’ regularity are provided.
18#
發(fā)表于 2025-3-24 16:49:22 | 只看該作者
Conference proceedings 2014d up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.
19#
發(fā)表于 2025-3-24 20:12:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静宁县| 阿合奇县| 南川市| 黄大仙区| 平湖市| 揭西县| 二连浩特市| 都江堰市| 合肥市| 绍兴市| 全州县| 时尚| 固始县| 黄大仙区| 四会市| 新疆| 商城县| 尼玛县| 康保县| 邓州市| 内黄县| 疏附县| 建昌县| 洪江市| 黄大仙区| 无锡市| 安阳市| 济宁市| 类乌齐县| 和林格尔县| 调兵山市| 临朐县| 盖州市| 阳新县| 宣城市| 漳浦县| 桐乡市| 凤山市| 平凉市| 商城县| 和林格尔县|