找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 16:34:50 | 只看該作者
42#
發(fā)表于 2025-3-28 22:40:35 | 只看該作者
Drug Repurposing Opportunities in Cancer,al solution should be preserved within the framework of Geometric Integration. This chapter considers the volume-preserving exponential integrators for different vector fields. We first analyse a necessary and sufficient condition of volume preservation for exponential integrators. We then discuss v
43#
發(fā)表于 2025-3-28 23:51:48 | 只看該作者
Elisa Barbarotto,George A. Calinsystems is called extended discrete gradient method. In this chapter, on the basis of the extended discrete gradient method, we present an efficient approach to devising a structure-preserving scheme for numerically solving conservative (dissipative) nonlinear wave equations. This scheme can preserv
44#
發(fā)表于 2025-3-29 04:01:11 | 只看該作者
45#
發(fā)表于 2025-3-29 09:12:16 | 只看該作者
Molecular Evolution and Phylogeny of , yse the nonlinear stability and convergence when a fully discrete symplectic scheme is designed for nonlinear Hamiltonian PDEs. This chapter presents a symplectic approximation for efficiently solving semilinear Klein–Gordon equations, which can be formulated as an abstract Hamiltonian ordinary diff
46#
發(fā)表于 2025-3-29 13:18:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:30 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:58 | 只看該作者
49#
發(fā)表于 2025-3-30 01:29:08 | 只看該作者
50#
發(fā)表于 2025-3-30 05:45:01 | 只看該作者
Exponential Collocation Methods for Conservative or Dissipative Systems,arbitrarily high order and preserve exactly or approximately first integrals or Lyapunov functions. In particular, the application of ECMs to stiff gradient systems is discussed in detail, and it turns out that ECMs are unconditionally energy-diminishing and strongly damped even for very stiff gradi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南和县| 奉贤区| 灵丘县| 彝良县| 治县。| 泽州县| 阳泉市| 曲松县| 于田县| 新田县| 贡嘎县| 南陵县| 前郭尔| 罗平县| 济宁市| 石首市| 洛阳市| 姜堰市| 慈溪市| 大城县| 五指山市| 惠东县| 浏阳市| 鸡西市| 岐山县| 云霄县| 启东市| 织金县| 葫芦岛市| 六枝特区| 普定县| 柳林县| 驻马店市| 准格尔旗| 南城县| 商丘市| 易门县| 永登县| 临泽县| 鄂托克旗| 建瓯市|