找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FARCE
11#
發(fā)表于 2025-3-23 12:55:36 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:10 | 只看該作者
Continuous-Stage ERKN Integrators for Second-Order ODEs with Highly Oscillatory Solutions,s, sufficient conditions for energy preservation are shown for CSERKN methods. The symmetry and stability of CSERKN integrators are also analysed in detail. Preliminary numerical results highlight the effectiveness of CSERKN methods.
14#
發(fā)表于 2025-3-24 02:00:29 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:16 | 只看該作者
Exponential Collocation Methods for Conservative or Dissipative Systems,ent systems. As a consequence of this discussion, arbitrary-order trigonometric/RKN collocation methods are also presented and analysed for second-order highly oscillatory/general systems. The chapter is accompanied by numerical results that demonstrate the potential value of this research.
16#
發(fā)表于 2025-3-24 08:10:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:49 | 只看該作者
18#
發(fā)表于 2025-3-24 16:53:26 | 只看該作者
19#
發(fā)表于 2025-3-24 21:47:49 | 只看該作者
Volume-Preserving Exponential Integrators,onential integrators are demonstrated. For solving highly oscillatory second-order systems, efficient volume-preserving exponential integrators are derived, and for separable partitioned systems, volume-preserving ERKN integrators are presented. Moreover, volume-preserving RKN methods are also investigated.
20#
發(fā)表于 2025-3-25 00:11:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐闻县| 衡南县| 略阳县| 宿州市| 将乐县| 揭东县| 祁阳县| 新蔡县| 平远县| 兴业县| 昌邑市| 丰城市| 兴城市| 江口县| 都江堰市| 榆林市| 余干县| 东至县| 洞口县| 宜丰县| 遵义县| 承德县| 平谷区| 杂多县| 都匀市| 泗阳县| 漠河县| 富蕴县| 万盛区| 静安区| 合阳县| 临江市| 陆丰市| 黔东| 翁源县| 古交市| 桐柏县| 称多县| 镇巴县| 沙河市| 昭平县|