找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 03:57:09 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:04 | 只看該作者
Diagnosis of Allergic Reactions to Drugs, the structural richness of the Euclidean space. This is in line with efforts made in the direction of extending the standard theory of Besov and Triebel-Lizorkin spaces to the geometric measure theoretic context of spaces of homogeneous type; see, e.g., [90],?[86],?[91],?[92],?[203],?[89],?[152],?and [206].
23#
發(fā)表于 2025-3-25 12:58:01 | 只看該作者
24#
發(fā)表于 2025-3-25 16:37:25 | 只看該作者
Banach Function Spaces, Extrapolation, and Orlicz Spaces,imal operator happens to be bounded. Finally, in §. we focus on Orlicz spaces which, in particular, are natural examples of classical Banach function spaces for which the machinery developed so far applies.
25#
發(fā)表于 2025-3-25 21:20:05 | 只看該作者
26#
發(fā)表于 2025-3-26 02:12:08 | 只看該作者
Luís Pereira Justo,Helena Maria Calilplicable to more general topological vector spaces (which are not necessarily locally convex). In §. we recall some basic results to this effect, obtained via a “dual-less” approach to Fredholm theory. Ultimately, this shows that the core principle of the theory, namely that . is pervasive.
27#
發(fā)表于 2025-3-26 06:10:28 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:28 | 只看該作者
Prachi Suman,Anupama Paul,Awanish Mishraspaces (of order one) in the Euclidean setting, based on ordinary weak derivatives. Such a compatibility reinforces the idea that this is indeed a natural generalization of the standard scale of Sobolev spaces from the (entire) Euclidean ambient to sets exhibiting a much more intricate geometry (bot
29#
發(fā)表于 2025-3-26 16:37:23 | 只看該作者
30#
發(fā)表于 2025-3-26 16:57:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陵水| 荔浦县| 崇信县| 红原县| 科尔| 西乡县| 开阳县| 鄯善县| 临西县| 安化县| 唐海县| 宁远县| 内黄县| 康平县| 永靖县| 濮阳市| 个旧市| 葫芦岛市| 二手房| 若尔盖县| 新河县| 枣强县| 安岳县| 延边| 光泽县| 蒲城县| 西乌珠穆沁旗| 合水县| 鄱阳县| 定结县| 迁西县| 会宁县| 汶上县| 田林县| 玛沁县| 东阳市| 花垣县| 织金县| 收藏| 堆龙德庆县| 云安县|