找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Function Theory in Higher Dimension; Filippo Bracci Book 2017 Springer International Publishing AG, part of Springer Nature 2017

[復(fù)制鏈接]
樓主: ARGOT
21#
發(fā)表于 2025-3-25 06:18:33 | 只看該作者
On Parabolic Dichotomy,verges to zero. It is an open question whether such a dichotomy holds in the unit ball .. We show how this question is related to the theory of canonical Kobayashi hyperbolic semi-models, to commuting holomorphic self-maps of the ball and to a purely geometric problem about biholomorphisms of the ball.
22#
發(fā)表于 2025-3-25 10:34:29 | 只看該作者
,Is There a Teichmüller Principle in Higher Dimensions?,ns of one complex variable is connected with an associated quadratic differential. The purpose of this paper is to indicate a possible way of extending Teichmüller’s principle to several complex variables. This approach is based on the Loewner differential equation.
23#
發(fā)表于 2025-3-25 13:40:48 | 只看該作者
24#
發(fā)表于 2025-3-25 16:38:22 | 只看該作者
W. Irmer,F. Baumgartl,M. Zindlerverges to zero. It is an open question whether such a dichotomy holds in the unit ball .. We show how this question is related to the theory of canonical Kobayashi hyperbolic semi-models, to commuting holomorphic self-maps of the ball and to a purely geometric problem about biholomorphisms of the ba
25#
發(fā)表于 2025-3-25 23:07:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:21:43 | 只看該作者
https://doi.org/10.1007/978-3-319-04334-0ns of one complex variable is connected with an associated quadratic differential. The purpose of this paper is to indicate a possible way of extending Teichmüller’s principle to several complex variables. This approach is based on the Loewner differential equation.
27#
發(fā)表于 2025-3-26 07:52:38 | 只看該作者
28#
發(fā)表于 2025-3-26 11:35:34 | 只看該作者
29#
發(fā)表于 2025-3-26 15:18:15 | 只看該作者
Ingegerd Rosborg,Frantisek Kozisekf the theory of .-modulus on networks that we have been developing in recent years. The hope is not only to develop a flexible tool on networks that can be useful for practical applications, but also that the rich unfolding theory on network will eventually inform the classical theory on metric meas
30#
發(fā)表于 2025-3-26 18:33:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑河市| 米林县| 昌黎县| 许昌县| 宜黄县| 常宁市| 武安市| 新绛县| 亳州市| 县级市| 潜江市| 中方县| 丽水市| 且末县| 安岳县| 开化县| 古交市| 江油市| 舟山市| 华亭县| 邻水| 金坛市| 昔阳县| 冕宁县| 溧阳市| 峨眉山市| 三穗县| 定兴县| 滨州市| 东丽区| 庐江县| 沅陵县| 高雄县| 砀山县| 石狮市| 丘北县| 花莲县| 墨玉县| 曲靖市| 榕江县| 峨眉山市|