找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Discrepancy; An Illustrated Guide Ji?í Matou?ek Book 1999 Springer-Verlag Berlin Heidelberg 1999 Combinatorics.Dimension.Diskrepa

[復(fù)制鏈接]
樓主: 重要
21#
發(fā)表于 2025-3-25 04:21:38 | 只看該作者
978-3-642-03941-6Springer-Verlag Berlin Heidelberg 1999
22#
發(fā)表于 2025-3-25 08:51:16 | 只看該作者
23#
發(fā)表于 2025-3-25 14:44:29 | 只看該作者
24#
發(fā)表于 2025-3-25 16:55:35 | 只看該作者
https://doi.org/10.1007/978-981-10-7500-1In this chapter, we are going to investigate the combinatorial discrepancy, an exciting and significant subject in its own right. From Section 1.3, we recall the basic definition: If . is a finite set and . ? 2. is a family of sets on .,a . is any mapping ., and we have disc ., where .
25#
發(fā)表于 2025-3-25 21:10:01 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:16 | 只看該作者
27#
發(fā)表于 2025-3-26 06:35:03 | 只看該作者
https://doi.org/10.1007/978-3-658-18971-6id, placed in the unit square in an appropriate scale, as in Fig. 2.1(a). It is easy to see that this gives discrepancy of the order .. Another attempt might be n independent random points in the unit square as in Fig. 2.1(b), but these typically have discrepancy about . as well. (In fact, with high
28#
發(fā)表于 2025-3-26 09:41:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:36 | 只看該作者
30#
發(fā)表于 2025-3-26 19:01:24 | 只看該作者
https://doi.org/10.1007/978-3-476-05622-1seen some lower bounds in Chapter 4 but not in a geometric setting). So far we have not answered the basic question, Problem 1.1, namely whether the discrepancy for axis-parallel rectangles must grow to infinity as n . → ∞. An answer is given in Section 6.1, where we prove that .(.,..) is at least o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
句容市| 花垣县| 大邑县| 宽城| 南丰县| 武乡县| 云和县| 西乌珠穆沁旗| 柳江县| 义马市| 南丹县| 黑龙江省| 荥经县| 射阳县| 呈贡县| 利津县| 遵化市| 安义县| 子洲县| 德化县| 清镇市| 黔东| 龙泉市| 马龙县| 灌南县| 韶关市| 会东县| 贺兰县| 合肥市| 上栗县| 荣昌县| 霸州市| 邵武市| 安陆市| 宾川县| 九龙县| 台中县| 青铜峡市| 辛集市| 沭阳县| 昔阳县|