找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Crystallography; An Axiomatic Introdu Peter Engel Book 1986 D. Reidel Publishing Company, Dordrecht, Holland 1986 crystal.crystal

[復(fù)制鏈接]
樓主: frustrate
11#
發(fā)表于 2025-3-23 13:15:22 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:50 | 只看該作者
Atoms may be considered as small rigid balls. The packing of balls is an important concept in crystallography for the description of crystal structures, that is, the arrangement of atoms in a crystal. Many inorganic crystal structures are based on densest packings of balls.
13#
發(fā)表于 2025-3-23 21:17:26 | 只看該作者
14#
發(fā)表于 2025-3-24 01:15:52 | 只看該作者
15#
發(fā)表于 2025-3-24 05:31:01 | 只看該作者
Reduction of Quadratic Forms,For applications it is important to decide wether two different lattice bases belong to one and the same lattice T.. This problem is solved through the determination of an integral reduced form denoted here as ?-reduced.
16#
發(fā)表于 2025-3-24 07:44:50 | 只看該作者
Crystallographic Symmetry Operations,In this chapter We investigate the restrictions imposed by a lattice on the symmetry operations acting on a regular point system X C E..
17#
發(fā)表于 2025-3-24 14:34:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:51:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:26 | 只看該作者
Space Groups,Up till now symmetry groups were considered only which leave at least one point fixed. This restriction is now removed and we investigate groups of symmetry operations which act transitively on a regular point system XCE..
20#
發(fā)表于 2025-3-24 23:23:53 | 只看該作者
Space Partitions,The investigation of space partitions permits us to get a better insight into the discontinuum. The most important result of this chapter will be the regularity condition which is discussed in section 9.4.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九台市| 大城县| 贵溪市| 鄂托克前旗| 丰宁| 贡嘎县| 仁化县| 大冶市| 额尔古纳市| 上蔡县| 宁城县| 清河县| 若羌县| 连江县| 永靖县| 休宁县| 玉树县| 铜山县| 灵山县| 抚宁县| 蓬莱市| 青川县| 保亭| 南丰县| 镇坪县| 中宁县| 霍山县| 民和| 建德市| 京山县| 吴桥县| 扶沟县| 信丰县| 怀集县| 临夏县| 阜阳市| 沧州市| 惠水县| 仲巴县| 西和县| 武城县|