找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
41#
發(fā)表于 2025-3-28 16:14:45 | 只看該作者
42#
發(fā)表于 2025-3-28 21:38:49 | 只看該作者
43#
發(fā)表于 2025-3-29 00:17:05 | 只看該作者
44#
發(fā)表于 2025-3-29 05:29:51 | 只看該作者
Optimal stationary exploitation of size-structured population with intra-specific competition,We analyze an exploitation of size-structured population in stationary mode and prove the existence of stationary state of population for a given stationary control. The existence of an optimal control is proved and the necessary optimal condition is found.
45#
發(fā)表于 2025-3-29 10:06:35 | 只看該作者
Remarks on Lipschitz domains in Carnot groups,In this Note we present the basic features of the theory of Lipschitz maps within Carnot groups as it is developed in [.], and we prove that intrinsic Lipschitz domains in Carnot groups are uniform domains.
46#
發(fā)表于 2025-3-29 15:29:29 | 只看該作者
47#
發(fā)表于 2025-3-29 19:11:48 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:21 | 只看該作者
,On Local Approximation Theorem on Equiregular Carnot-Carathéodory Spaces,We prove the Local Approximation Theorem on equiregular Carnot-Carathéodory spaces with ..-smooth basis vector fields.
49#
發(fā)表于 2025-3-30 02:45:23 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:21 | 只看該作者
On the injectivity and nonfocal domains of the ellipsoid of revolution,omains is investigated on the ellipsoid of revolution. Building upon previous results [., .], both the oblate and prolate cases are addressed. Preliminary numerical estimates are given in the prolate situation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 股票| 关岭| 新密市| 怀柔区| 股票| 海晏县| 申扎县| 府谷县| 姚安县| 阿巴嘎旗| 淳安县| 海淀区| 鄂托克旗| 孝义市| 繁昌县| 沁阳市| 阜阳市| 左权县| 永昌县| 汉中市| 周宁县| 望江县| 白城市| 高阳县| 甘孜| 新绛县| 九江县| 胶南市| 赣榆县| 满洲里市| 綦江县| 封开县| 香港 | 定远县| 财经| 定南县| 宁强县| 武汉市| 阿瓦提县| 余江县|