找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
21#
發(fā)表于 2025-3-25 03:52:33 | 只看該作者
22#
發(fā)表于 2025-3-25 08:49:53 | 只看該作者
23#
發(fā)表于 2025-3-25 14:00:47 | 只看該作者
24#
發(fā)表于 2025-3-25 19:23:41 | 只看該作者
Gianna Stefani,Ugo Boscain,Mario SigalottiFeature chapter on open problems.Presents state of the art of the research in the field.Collects papers by top level scientists.Includes supplementary material:
25#
發(fā)表于 2025-3-25 23:22:55 | 只看該作者
https://doi.org/10.1007/978-3-319-02132-4control system; geometric control; sub-Riemannian geometry
26#
發(fā)表于 2025-3-26 01:16:57 | 只看該作者
,Dokumentenlogistik – ein Fallbeispiel,omains is investigated on the ellipsoid of revolution. Building upon previous results [., .], both the oblate and prolate cases are addressed. Preliminary numerical estimates are given in the prolate situation.
27#
發(fā)表于 2025-3-26 04:55:01 | 只看該作者
The Method of Majority Decision,an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.
28#
發(fā)表于 2025-3-26 08:46:29 | 只看該作者
On the injectivity and nonfocal domains of the ellipsoid of revolution,omains is investigated on the ellipsoid of revolution. Building upon previous results [., .], both the oblate and prolate cases are addressed. Preliminary numerical estimates are given in the prolate situation.
29#
發(fā)表于 2025-3-26 15:28:50 | 只看該作者
On the Alexandrov Topology of sub-Lorentzian Manifolds,an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.
30#
發(fā)表于 2025-3-26 18:26:53 | 只看該作者
Dokumente zum Europ?ischen RechtWe discuss some challenging open problems in the geometric control theory and sub-Riemannian geometry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淳安县| 青川县| 新源县| 虞城县| 惠来县| 乌海市| 壶关县| 阿尔山市| 佛学| 晋城| 始兴县| 孙吴县| 重庆市| 莲花县| 万年县| 克什克腾旗| 临夏市| 朝阳县| 阿瓦提县| 百色市| 错那县| 云林县| 安阳市| 邵东县| 宁明县| 成武县| 萨迦县| 广安市| 马尔康县| 阿尔山市| 交城县| 虎林市| 合江县| 孟津县| 新绛县| 灵丘县| 博客| 建昌县| 布尔津县| 丁青县| 日喀则市|