找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Configurations of Singularities of Planar Polynomial Differential Systems; A Global Classificat Joan C. Artés,Jaume Llibre,Nicola

[復(fù)制鏈接]
樓主: Withdrawal
21#
發(fā)表于 2025-3-25 04:06:44 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:28 | 只看該作者
Quadratic systems with definite singularities of total multiplicity threeAccording to Proposition 5.1, for a quadratic system to have finite singularities of total multiplicity three (i.e. .. = 3), the conditions .. = 0 and .. ≠ 0 must be satisfied. Then by Theorem 6.4 the following lemma is valid.
23#
發(fā)表于 2025-3-25 14:43:18 | 只看該作者
Quadratic systems with finite singularities of total multiplicity fourConsider real the quadratic systems (8.1). According to Proposition 5.1 for a quadratic system (8.1) to have finite singularities of total multiplicity four (i.e. .. = 4), the condition .. ≠ 0 must be satisfied. Therefore according to Theorem 6.4 the following lemma is valid.
24#
發(fā)表于 2025-3-25 19:05:19 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:27 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:38:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:50:44 | 只看該作者
Part 1: Introduction and General Principles, the publication of this book (see [41, 29, 338, 301, 26, 32]). Roughly speaking these results give us global information about the possibilities for the number and multiplicity of finite singularities (see [41, 29]), the canonical forms for these possibilities, the weak singularities that may occur
30#
發(fā)表于 2025-3-26 17:31:43 | 只看該作者
Book 2021cient and less time-consuming..Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安塞县| 楚雄市| 灌南县| 平邑县| 砚山县| 罗甸县| 宜城市| 荥阳市| 梁平县| 衡山县| 大兴区| 和田市| 信阳市| 宁河县| 平原县| 安宁市| 射阳县| 万山特区| 巴林右旗| 江孜县| 峡江县| 千阳县| 苍山县| 宁南县| 鹿泉市| 永清县| 孝感市| 青川县| 石河子市| 湖北省| 汉阴县| 沭阳县| 宜城市| 甘泉县| 津南区| 辽阳市| 安陆市| 临沧市| 新余市| 开封市| 浦江县|