找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Computing with Clifford Algebras; Theoretical Foundati Gerald Sommer Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algebra.Alg

[復(fù)制鏈接]
查看: 31133|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:02:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Computing with Clifford Algebras
副標(biāo)題Theoretical Foundati
編輯Gerald Sommer
視頻videohttp://file.papertrans.cn/384/383485/383485.mp4
圖書封面Titlebook: Geometric Computing with Clifford Algebras; Theoretical Foundati Gerald Sommer Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algebra.Alg
描述Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism.
出版日期Book 2001
關(guān)鍵詞Algebra; Algebraic Expressions; Algebraic Geometry; Clifford Algebras; Computational Geometry; Computer; C
版次1
doihttps://doi.org/10.1007/978-3-662-04621-0
isbn_softcover978-3-642-07442-4
isbn_ebook978-3-662-04621-0
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書目名稱Geometric Computing with Clifford Algebras影響因子(影響力)




書目名稱Geometric Computing with Clifford Algebras影響因子(影響力)學(xué)科排名




書目名稱Geometric Computing with Clifford Algebras網(wǎng)絡(luò)公開度




書目名稱Geometric Computing with Clifford Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Computing with Clifford Algebras被引頻次




書目名稱Geometric Computing with Clifford Algebras被引頻次學(xué)科排名




書目名稱Geometric Computing with Clifford Algebras年度引用




書目名稱Geometric Computing with Clifford Algebras年度引用學(xué)科排名




書目名稱Geometric Computing with Clifford Algebras讀者反饋




書目名稱Geometric Computing with Clifford Algebras讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:33:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:31:51 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:44:38 | 只看該作者
6#
發(fā)表于 2025-3-22 14:46:43 | 只看該作者
7#
發(fā)表于 2025-3-22 20:45:59 | 只看該作者
https://doi.org/10.1007/978-94-007-0507-4ifferent formalisms. For example, standard matrix analysis has been used in [102] and [210]. An analysis of multiple view tensors in terms of Grassmann-Cayley (GC) algebra can be found in [82], [179], [80]. Geometric Algebra (GA) has also been applied to the problem [184], [185], [142], [141].
8#
發(fā)表于 2025-3-22 23:31:51 | 只看該作者
Susan Carter,Cally Guerin,Claire Aitchisonld” has to be understood by a computer. This may be with regard to control movement (robots), to survey a scene for later interpretation (medicine), or to create and mix artificial with real environments (special effects).
9#
發(fā)表于 2025-3-23 03:33:52 | 只看該作者
10#
發(fā)表于 2025-3-23 06:37:56 | 只看該作者
Spatial-Color Clifford Algebras for Invariant Image RecognitionPractice shows that they successfully cope with the problem of recognizing objects at different locations, of different views and illumination, and in different orders of blurring. But how is this done by the brain? How do we see? How do we recognize constantly moving and changing objects of the surrounding world?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜宾县| 洛川县| 修武县| 克东县| 城市| 平昌县| 吉木乃县| 蓬莱市| 囊谦县| 马边| 德保县| 十堰市| 大名县| 岐山县| 讷河市| 宁德市| 锦屏县| 西青区| 广水市| 波密县| 武强县| 上杭县| 诏安县| 周至县| 清河县| 靖安县| 开阳县| 承德市| 本溪市| 郓城县| 田东县| 东山县| 通化县| 吉水县| 安新县| 闵行区| 大厂| 尖扎县| 米脂县| 马边| 安康市|