找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Computing; for Wavelet Transfor Eduardo Bayro-Corrochano Book Jul 2010Latest edition Springer-Verlag London Limited 2010 Clifford

[復(fù)制鏈接]
查看: 38778|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:17:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Computing
副標(biāo)題for Wavelet Transfor
編輯Eduardo Bayro-Corrochano
視頻videohttp://file.papertrans.cn/384/383483/383483.mp4
概述Offers a gentle and pedagogic introduction to geometric algebra.Presents mathematical language in an accessible, clear manner for readers from diverse disciplines.Offers exercises, figures, pseudo-cod
圖書封面Titlebook: Geometric Computing; for Wavelet Transfor Eduardo Bayro-Corrochano Book Jul 2010Latest edition Springer-Verlag London Limited 2010 Clifford
描述.This book offers a gentle introduction to Clifford geometric algebra, an advanced mathematical framework, for applications in perception action systems. Part I, is written in an accessible way allowing readers to easily grasp the mathematical system of Clifford algebra. Part II presents related topics. While Part 3 features practical applications for Computer Vision, Robotics, Image Processing and Neural Computing...Topics and Features include: theory and application of the quaternion Fourier and wavelet transforms, thorough discussion on geometric computing under uncertainty, an entire chapter devoted to the useful conformal geometric algebra, presents examples and hints for the use of public domain computer programs for geometric algebra...The modern framework for geometric computing highlighted will be of great use for communities working on image processing, computer vision, artificial intelligence, neural networks, neuroscience, robotics, control engineering, human and robot interfaces, haptics and humanoids..
出版日期Book Jul 2010Latest edition
關(guān)鍵詞Clifford Algebras; Computer Vision; Geometric Computing; Neural Computing; Robotics
版次1
doihttps://doi.org/10.1007/978-1-84882-929-9
copyrightSpringer-Verlag London Limited 2010
The information of publication is updating

書目名稱Geometric Computing影響因子(影響力)




書目名稱Geometric Computing影響因子(影響力)學(xué)科排名




書目名稱Geometric Computing網(wǎng)絡(luò)公開度




書目名稱Geometric Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Computing被引頻次




書目名稱Geometric Computing被引頻次學(xué)科排名




書目名稱Geometric Computing年度引用




書目名稱Geometric Computing年度引用學(xué)科排名




書目名稱Geometric Computing讀者反饋




書目名稱Geometric Computing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:37 | 只看該作者
Springer-Verlag London Limited 2010
板凳
發(fā)表于 2025-3-22 01:48:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:38:04 | 只看該作者
5#
發(fā)表于 2025-3-22 10:45:54 | 只看該作者
use of public domain computer programs for geometric algebra...The modern framework for geometric computing highlighted will be of great use for communities working on image processing, computer vision, artificial intelligence, neural networks, neuroscience, robotics, control engineering, human and robot interfaces, haptics and humanoids..
6#
發(fā)表于 2025-3-22 15:37:07 | 只看該作者
Lie Algebras and the Algebra of Incidence Using the Null Cone and Affine Plane
7#
發(fā)表于 2025-3-22 18:31:51 | 只看該作者
Applications of Lie Filters, and Quaternion Fourier and Wavelet Transforms
8#
發(fā)表于 2025-3-23 01:10:21 | 只看該作者
9#
發(fā)表于 2025-3-23 05:02:58 | 只看該作者
10#
發(fā)表于 2025-3-23 07:45:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古田县| 桂平市| 巴彦淖尔市| 宁夏| 阿坝| 哈密市| 恩平市| 阿坝县| 新化县| 牡丹江市| 正定县| 策勒县| 驻马店市| 九龙坡区| 肇源县| 景泰县| 景洪市| 贺州市| 昌平区| 日照市| 布尔津县| 监利县| 林西县| 团风县| 榆林市| 广平县| 安吉县| 习水县| 永昌县| 于田县| 大同县| 五河县| 九龙坡区| 那坡县| 新密市| 双流县| 金沙县| 鱼台县| 武功县| 黎平县| 武隆县|