找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
21#
發(fā)表于 2025-3-25 06:25:54 | 只看該作者
A Generalized Central Limit Conjecture for Convex Bodies,t (up to a small factor) to the KLS conjecture. Any polynomial improvement in the current KLS bound of .. in . implies the generalized CLT, and vice versa. This tight connection suggests that the generalized CLT might provide insight into basic open questions in asymptotic convex geometry.
22#
發(fā)表于 2025-3-25 07:51:04 | 只看該作者
,Further Investigations of Rényi Entropy Power Inequalities and an Entropic Characterization of s-Corated result of Barron (Ann Probab 14:336–342, 1986). Additionally, we give an entropic characterization of the class of .-concave densities, which extends a classical result of Cover and Zhang (IEEE Trans Inform Theory 40(4):1244–1246, 1994).
23#
發(fā)表于 2025-3-25 13:38:31 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:07 | 只看該作者
25#
發(fā)表于 2025-3-25 22:09:30 | 只看該作者
Small Ball Probability for the Condition Number of Random Matrices,mbination of known results and techniques, it was not noticed in the literature before. As a key step of the proof, we apply estimates for the singular values of ., . obtained (under some additional assumptions) by Nguyen.
26#
發(fā)表于 2025-3-26 03:35:49 | 只看該作者
27#
發(fā)表于 2025-3-26 07:46:57 | 只看該作者
Distributed Autonomous Robotic System 6A classical theorem of Alon and Milman states that any . dimensional centrally symmetric convex body has a projection of dimension . which is either close to the .-dimensional Euclidean ball or to the .-dimensional cross-polytope. We extended this result to non-symmetric convex bodies.
28#
發(fā)表于 2025-3-26 09:01:04 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:45 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朔州市| 钦州市| 高唐县| 团风县| 九台市| 丹阳市| 景泰县| 阳信县| 乌拉特前旗| 九江市| 娄底市| 金华市| 屏南县| 康保县| 新竹市| 海南省| 尉氏县| 永登县| 上思县| 荃湾区| 昂仁县| 南川市| 南澳县| 荥经县| 新乡市| 额尔古纳市| 扶沟县| 五家渠市| 丰原市| 富顺县| 瓦房店市| 枣强县| 泰和县| 安西县| 章丘市| 和硕县| 监利县| 郴州市| 突泉县| 安义县| 浦江县|