找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar 1996- Vitali D. Milman,Gideon Schechtman Book 2000 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Glitch
31#
發(fā)表于 2025-3-27 00:17:08 | 只看該作者
,Concentration on the ?, ball,We prove a concentration inequality for functions, Lipschitz with respect to the Euclidean metric, on the ball of ?., 1 ≤ . < 2 equipped with the normalized Lebesgue measure.
32#
發(fā)表于 2025-3-27 03:16:56 | 只看該作者
https://doi.org/10.1007/978-981-15-8644-6lity for Lebesgue measure on the ball of ?.. An application is the lower exponential bound on the dimension of ?. admitting an isomorphic embedding of ?. and on the distortion of such those embeddings, proved in [L].
33#
發(fā)表于 2025-3-27 06:46:24 | 只看該作者
34#
發(fā)表于 2025-3-27 11:06:08 | 只看該作者
Rebecca Del Conte,Daniela Lalli,Paola Turanoed ball, if we start from an arbitrary convex body in ?.. We also show that the number of “deterministic” symmetrizations needed to approximate an Euclidean ball may be significantly smaller than the number of “random” ones.
35#
發(fā)表于 2025-3-27 13:37:19 | 只看該作者
,The uniform concentration of measure phenomenon in ?, (1 ≤ , ≤ 2),lity for Lebesgue measure on the ball of ?.. An application is the lower exponential bound on the dimension of ?. admitting an isomorphic embedding of ?. and on the distortion of such those embeddings, proved in [L].
36#
發(fā)表于 2025-3-27 21:09:03 | 只看該作者
37#
發(fā)表于 2025-3-27 22:39:47 | 只看該作者
Remarks on minkowski symmetrizations,ed ball, if we start from an arbitrary convex body in ?.. We also show that the number of “deterministic” symmetrizations needed to approximate an Euclidean ball may be significantly smaller than the number of “random” ones.
38#
發(fā)表于 2025-3-28 05:47:08 | 只看該作者
39#
發(fā)表于 2025-3-28 09:00:40 | 只看該作者
Geometric Aspects of Functional Analysis978-3-540-45392-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
40#
發(fā)表于 2025-3-28 12:34:57 | 只看該作者
https://doi.org/10.1007/978-981-15-8644-6lity for Lebesgue measure on the ball of ?.. An application is the lower exponential bound on the dimension of ?. admitting an isomorphic embedding of ?. and on the distortion of such those embeddings, proved in [L].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资中县| 山西省| 鄂伦春自治旗| 磴口县| 清河县| 雷山县| 襄城县| 云和县| 土默特右旗| 文成县| 定州市| 沂南县| 拉萨市| 黄浦区| 屯昌县| 吉木乃县| 湘乡市| 河东区| 梅河口市| 鹤岗市| 梅州市| 青海省| 平罗县| 五原县| 探索| 通许县| 措美县| 库伦旗| 和龙市| 孝昌县| 黔西县| 南江县| 绥阳县| 朝阳区| 时尚| 鄯善县| 越西县| 曲水县| 白朗县| 钦州市| 武冈市|