找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Ronen Eldan,Bo‘az Klartag,Emanuel Milman Book 2023 The Editor(s) (if applica

[復制鏈接]
樓主: 預兆前
41#
發(fā)表于 2025-3-28 15:04:10 | 只看該作者
42#
發(fā)表于 2025-3-28 20:11:22 | 只看該作者
43#
發(fā)表于 2025-3-29 01:45:50 | 只看該作者
https://doi.org/10.1057/9781403934314The works of Bennett, Carbery, Christ, Tao and of Valdimarsson have clarified when equality holds in the Brascamp-Lieb inequality. Here we characterize the case of equality in the Geometric case of Barthe’s reverse Brascamp-Lieb inequality.
44#
發(fā)表于 2025-3-29 03:49:10 | 只看該作者
45#
發(fā)表于 2025-3-29 07:56:37 | 只看該作者
46#
發(fā)表于 2025-3-29 14:08:58 | 只看該作者
47#
發(fā)表于 2025-3-29 17:40:36 | 只看該作者
Poverty and Slowness of Voluntary Movement,The aim of this note is to show that the local form of the logarithmic Brunn-Minkowski conjecture holds for zonoids. The proof uses a variant of the Bochner method due to Shenfeld and the author.
48#
發(fā)表于 2025-3-29 19:48:14 | 只看該作者
On the Gaussian Surface Area of Spectrahedra,We show that for sufficiently large . and . for some universal constant ., a random spectrahedron with matrices drawn from Gaussian orthogonal ensemble has Gaussian surface area . with high probability.
49#
發(fā)表于 2025-3-30 01:41:42 | 只看該作者
,The Case of Equality in Geometric Instances of Barthe’s Reverse Brascamp-Lieb Inequality,The works of Bennett, Carbery, Christ, Tao and of Valdimarsson have clarified when equality holds in the Brascamp-Lieb inequality. Here we characterize the case of equality in the Geometric case of Barthe’s reverse Brascamp-Lieb inequality.
50#
發(fā)表于 2025-3-30 08:08:28 | 只看該作者
The Entropic Barrier Is ,-Self-Concordant,For any convex body ., S. Bubeck and R. Eldan introduced the entropic barrier on . and showed that it is a .-self-concordant barrier. In this note, we observe that the optimal bound of . on the self-concordance parameter holds as a consequence of the dimensional Brascamp–Lieb inequality.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 20:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阜城县| 安宁市| 南和县| 五家渠市| 烟台市| 垣曲县| 平泉县| 阿拉善右旗| 石渠县| 宁南县| 枝江市| 罗平县| 石泉县| 通江县| 宣城市| 加查县| 平舆县| 台江县| 开江县| 通州市| 清水县| 涿鹿县| 渭源县| 芜湖市| 广东省| 江陵县| 宽甸| 平罗县| 潮州市| 通许县| 邓州市| 山阳县| 阿克陶县| 黎城县| 滕州市| 平泉县| 固安县| 松原市| 朝阳市| 翁源县| 剑阁县|