找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar 2002- Vitali D. Milman,Gideon Schechtman Book 2004 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:22:40 | 只看該作者
Vitali D. Milman,Gideon SchechtmanIncludes supplementary material:
32#
發(fā)表于 2025-3-27 02:14:29 | 只看該作者
33#
發(fā)表于 2025-3-27 09:02:08 | 只看該作者
34#
發(fā)表于 2025-3-27 09:46:37 | 只看該作者
35#
發(fā)表于 2025-3-27 15:58:21 | 只看該作者
36#
發(fā)表于 2025-3-27 20:21:41 | 只看該作者
37#
發(fā)表于 2025-3-27 22:15:52 | 只看該作者
Several Remarks Concerning the Local Theory of , Spaces,of their containing . spaces. We also show that a diagonal of the canonical basis of ., . > 2, with an unconditional basic sequence in . whose span is complemented, spans a space which is isomorphic to a complemented subspace of ..
38#
發(fā)表于 2025-3-28 02:23:41 | 只看該作者
On John-Type Ellipsoids,at the L?wner-John ellipsoid of . is its unique fixed point. A new characterization of the L?wner-John ellipsoid is obtained, and we also gain information regarding the contact points of inscribed ellipsoids with ..
39#
發(fā)表于 2025-3-28 09:52:29 | 只看該作者
Isomorphic Random Subspaces and Quotients of Convex and Quasi-Convex Bodies,ither a closed convex body (not necessarily symmetric) or a closed symmetric quasi-convex body. We show that if a generic subspace of some fixed proportional dimension of one such space is isomorphic to a generic quotient of some proportional dimension of another space then for . proportion arbitrar
40#
發(fā)表于 2025-3-28 11:09:58 | 只看該作者
On the Thermodynamic Limit for Disordered Spin Systems,tructure. Most of the facts are well known, although we discuss also the recent progress in establishing the thermodynamic limit in the mean field type models with random interaction. We consider also simplest models of statistical physics, displaying phase transitions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清原| 高青县| 花莲市| 祁连县| 满洲里市| 青神县| 商河县| 余庆县| 拜城县| 土默特右旗| 略阳县| 西华县| 德惠市| 石景山区| 崇信县| 汕尾市| 龙江县| 顺平县| 西乌| 兴国县| 宁夏| SHOW| 南宁市| 湘潭县| 北川| 双峰县| 鄂托克前旗| 玛纳斯县| 凯里市| 广德县| 竹北市| 宝丰县| 离岛区| 连城县| 云南省| 扎鲁特旗| 甘洛县| 盐城市| 重庆市| 宜兴市| 仁化县|