找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Approximation Theory; Alexey R. Alimov,Igor’ G. Tsar’kov Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[復制鏈接]
樓主: architect
41#
發(fā)表于 2025-3-28 16:44:13 | 只看該作者
Discursive Approaches to Language Policyes .(.), we give several results that either characterize or give sufficient conditions for the existence of Chebyshev subspaces in?.(.). Among such conditions, we mention de la Vallée Poussin’s estimates (see Sect.?.), the Haar characterization property (see?Sect.?.), and Mairhuber’s theorem (see S
42#
發(fā)表于 2025-3-28 18:54:29 | 只看該作者
https://doi.org/10.1007/978-3-030-55038-7of a?finite-dimensional subspace (or a?convex set). We present two fundamental results on approximation by convex sets in the inner-product setting?—?the Kolmogorov criterion of best approximation and Phelps’s criterion for convexity of a?Chebyshev set in a?Euclidean space in terms of the Lipschitz
43#
發(fā)表于 2025-3-28 23:28:10 | 只看該作者
44#
發(fā)表于 2025-3-29 06:05:38 | 只看該作者
https://doi.org/10.1007/978-981-19-4097-2owing fact important for applications: in corresponding spaces, a?nonconvex set cannot be a?Chebyshev set. As a?corollary, at some point either the existence or the uniqueness property is not satisfied. Results of this kind can be useful in solving extremal problems.
45#
發(fā)表于 2025-3-29 08:48:05 | 只看該作者
Ryan Evely Gildersleeve,Katie Kleinhesselink uniqueness sets, and so?on). By structural characteristics of sets one usually understands properties of linearity, finite-dimensionality, convexity, connectedness of various kinds, and smoothness of sets. From results of such kind one may derive necessary and sufficient conditions for a?set to hav
46#
發(fā)表于 2025-3-29 13:14:36 | 只看該作者
https://doi.org/10.1057/9781137487339pproximative properties of more general subspaces stems from consideration of Chebyshev (Haar) systems of functions that extend the classical Chebyshev system composed of polynomials of degree at most?. (see Chap.?2). Of course, every space?. contains trivial Chebyshev subspaces: . and ..
47#
發(fā)表于 2025-3-29 18:37:10 | 只看該作者
48#
發(fā)表于 2025-3-29 22:14:23 | 只看該作者
49#
發(fā)表于 2025-3-30 02:39:37 | 只看該作者
frequently encountered in various extreme problems. Properties of Haar cones, as well as uniqueness and strong uniqueness of best approximation by Haar cones, are discussed in Sect.?.. The alternation theorem for Haar cones is given in?Sect.?.. Next in ., we discuss the property of varisolvency, wh
50#
發(fā)表于 2025-3-30 04:36:54 | 只看該作者
https://doi.org/10.1007/978-1-4842-3267-5al-valued functions, approximation by Chebyshev subspaces was found to be closely related to various problems in interpolation, uniqueness, and the number of zeros in nontrivial polynomials (the generalized Haar property). For vector-valued functions, the relation between such properties turned out
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 12:42
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台中县| 九龙城区| 巴塘县| 怀柔区| 兰考县| 巴彦县| 井研县| 理塘县| 焦作市| 嘉荫县| 西乌珠穆沁旗| 澎湖县| 航空| 双牌县| 敦化市| 清苑县| 攀枝花市| 田林县| 无锡市| 临泉县| 庆云县| 土默特右旗| 兴仁县| 江孜县| 盐津县| 六盘水市| 榆社县| 三明市| 河北省| 保德县| 长汀县| 青田县| 玉龙| 鹤峰县| 丰县| 秦安县| 青岛市| 开化县| 双城市| 苍梧县| 武清区|