找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis of Quasilinear Inequalities on Complete Manifolds; Maximum and Compact Bruno Bianchini,Luciano Mari,Marco Rigoli Book 2

[復制鏈接]
樓主: Awkward
11#
發(fā)表于 2025-3-23 10:16:12 | 只看該作者
https://doi.org/10.1007/978-981-99-9569-1Consider the problem . We recall that an end Ω???. is a connected component with non-compact closure of .?., for some compact set ..
12#
發(fā)表于 2025-3-23 15:36:24 | 只看該作者
Discourse, the Body, and IdentityIn this section, we relate the Keller–Osserman condition . to the strong Liouville property (SL) for solutions of (..). It is particularly interesting to see how geometry comes into play via the validity of the weak or the strong maximum principle for (.). Δ.. Hereafter, we require . and moreover
13#
發(fā)表于 2025-3-23 21:29:15 | 只看該作者
Preliminaries from Riemannian Geometry,We briefly recall some facts from Riemannian Geometry, mostly to fix notation and conventions. Our main source for the present chapter is P. Petersen’s book. Let (.., 〈 , 〉) be a connected Riemannian manifold. We denote with ? the Levi–Civita connection induced by 〈 , 〉, and with . the (4, 0) curvature tensor of ?, with the usual sign agreement
14#
發(fā)表于 2025-3-24 01:13:27 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:50 | 只看該作者
Boundary Value Problems for Nonlinear ODEs,At the beginning of Chap. ., we observed that to find radial solutions of (..) and (..) one is lead to solve the following ODE: . on an interval of ., where we have extended . to an odd function on all of .. The functions .. and . are bounds, respectively, for the volume of geodesic spheres of . and for ..
16#
發(fā)表于 2025-3-24 07:27:20 | 只看該作者
Comparison Results and the Finite Maximum Principle,In this section, we collect two comparison theorems and a “pasting lemma” for Lip. solutions that will be repeatedly used in the sequel. Throughout the section, we assume
17#
發(fā)表于 2025-3-24 13:16:43 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:15 | 只看該作者
,Strong Maximum Principle and Khas’minskii Potentials,The aim of this section is to prove Theorem . in the Introduction. We observe that the argument is based on the existence of what we call a “Khas’minskii potential”, according to the following.
19#
發(fā)表于 2025-3-24 22:38:33 | 只看該作者
20#
發(fā)表于 2025-3-25 00:03:39 | 只看該作者
,Keller–Osserman, A Priori Estimates and the (,) Property,In this section, we relate the Keller–Osserman condition . to the strong Liouville property (SL) for solutions of (..). It is particularly interesting to see how geometry comes into play via the validity of the weak or the strong maximum principle for (.). Δ.. Hereafter, we require . and moreover
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
逊克县| 玉屏| 紫金县| 北辰区| 仪陇县| 会东县| 屯门区| 汉寿县| 万荣县| 广东省| 彭州市| 伊金霍洛旗| 登封市| 枣强县| 略阳县| 宁武县| 肥乡县| 清水县| 璧山县| 胶南市| 舟山市| 阜城县| 淮阳县| 彩票| 淮南市| 黑龙江省| 塘沽区| 南丰县| 白河县| 汾西县| 睢宁县| 毕节市| 东至县| 乐至县| 南开区| 滁州市| 德庆县| 安宁市| 怀柔区| 阳城县| 北宁市|