找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis and Nonlinear Partial Differential Equations; Stefan Hildebrandt,Hermann Karcher Book 2003 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: Wilder
41#
發(fā)表于 2025-3-28 16:13:01 | 只看該作者
42#
發(fā)表于 2025-3-28 21:06:13 | 只看該作者
43#
發(fā)表于 2025-3-28 23:19:05 | 只看該作者
Constructing Isospectral Metrics via Principal Connectionsities; two manifolds are said to be isospectral if their spectra coincide. Spectral geometry deals with the mutual influences between the spectrum of a Riemannian manifold and its geometry. To which extent does the spectrum determine the geometry?
44#
發(fā)表于 2025-3-29 03:17:47 | 只看該作者
45#
發(fā)表于 2025-3-29 10:06:50 | 只看該作者
An Adaptive Finite Element Method for Minimal Surfacesry time consuming, we derive an a posteriori controlled adaptive algorithm based on a recently developed and analyzed finite element method [11] [12] [13]. Numerical results are presented for two examples.
46#
發(fā)表于 2025-3-29 12:05:03 | 只看該作者
Geometric Conditions on Free Boundariesoundary. In smooth models approximating these free boundary problems, the geometric conditions are replaced by elliptic and parabolic equations. We describe the approximation of mean curvature flow by the Allen- Cahn equation, also with coupling, and of the Stefan problem with Gibbs-Thomson law by the quasi-stationary phase field equations.
47#
發(fā)表于 2025-3-29 18:01:14 | 只看該作者
On Generalized Mean Curvature Flow in Surface Processingh field. They lead to interesting systems of nonlinear partial differential equations and allow the appropriate mathematical modeling of physical processes such as material interface propagation, fluid free boundary motion, crystal growth.
48#
發(fā)表于 2025-3-29 20:27:12 | 只看該作者
49#
發(fā)表于 2025-3-29 23:55:54 | 只看該作者
50#
發(fā)表于 2025-3-30 04:14:08 | 只看該作者
https://doi.org/10.1007/978-3-642-55627-2Kolmogorov–Arnold–Moser theorem; differential equation; geometric analysis; nonlinear partial different
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 迭部县| 体育| 平泉县| 高安市| 威远县| 河源市| 吉首市| 凤阳县| 册亨县| 玉环县| 三亚市| 衡阳市| 白银市| 长沙市| 吴堡县| 龙岩市| 河源市| 南木林县| 广德县| 巴南区| 千阳县| 衡水市| 宝应县| 增城市| 镇康县| 稷山县| 大庆市| 惠安县| 罗江县| 昌宁县| 金川县| 遂宁市| 梧州市| 凤阳县| 唐海县| 阳高县| 视频| 永泰县| 麻阳| 临潭县|