找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis and Nonlinear Partial Differential Equations; Stefan Hildebrandt,Hermann Karcher Book 2003 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: Wilder
41#
發(fā)表于 2025-3-28 16:13:01 | 只看該作者
42#
發(fā)表于 2025-3-28 21:06:13 | 只看該作者
43#
發(fā)表于 2025-3-28 23:19:05 | 只看該作者
Constructing Isospectral Metrics via Principal Connectionsities; two manifolds are said to be isospectral if their spectra coincide. Spectral geometry deals with the mutual influences between the spectrum of a Riemannian manifold and its geometry. To which extent does the spectrum determine the geometry?
44#
發(fā)表于 2025-3-29 03:17:47 | 只看該作者
45#
發(fā)表于 2025-3-29 10:06:50 | 只看該作者
An Adaptive Finite Element Method for Minimal Surfacesry time consuming, we derive an a posteriori controlled adaptive algorithm based on a recently developed and analyzed finite element method [11] [12] [13]. Numerical results are presented for two examples.
46#
發(fā)表于 2025-3-29 12:05:03 | 只看該作者
Geometric Conditions on Free Boundariesoundary. In smooth models approximating these free boundary problems, the geometric conditions are replaced by elliptic and parabolic equations. We describe the approximation of mean curvature flow by the Allen- Cahn equation, also with coupling, and of the Stefan problem with Gibbs-Thomson law by the quasi-stationary phase field equations.
47#
發(fā)表于 2025-3-29 18:01:14 | 只看該作者
On Generalized Mean Curvature Flow in Surface Processingh field. They lead to interesting systems of nonlinear partial differential equations and allow the appropriate mathematical modeling of physical processes such as material interface propagation, fluid free boundary motion, crystal growth.
48#
發(fā)表于 2025-3-29 20:27:12 | 只看該作者
49#
發(fā)表于 2025-3-29 23:55:54 | 只看該作者
50#
發(fā)表于 2025-3-30 04:14:08 | 只看該作者
https://doi.org/10.1007/978-3-642-55627-2Kolmogorov–Arnold–Moser theorem; differential equation; geometric analysis; nonlinear partial different
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 永福县| 长葛市| 鲁甸县| 三台县| 晴隆县| 进贤县| 常熟市| 龙胜| 左云县| 台南市| 双峰县| 尚志市| 陇南市| 湘乡市| 鹿邑县| 蒲城县| 浦城县| 自贡市| 静乐县| 公安县| 杂多县| 余姚市| 北海市| 阳江市| 建水县| 铜川市| 广灵县| 新民市| 蓬安县| 津南区| 五原县| 枣庄市| 博罗县| 德昌县| 南丹县| 泰安市| 铅山县| 梁平县| 玛纳斯县| 扬中市|