找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 19881st edition Springer-Verl

[復制鏈接]
查看: 29530|回復: 47
樓主
發(fā)表于 2025-3-21 17:37:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Algorithms and Combinatorial Optimization
編輯Martin Gr?tschel,László Lovász,Alexander Schrijver
視頻videohttp://file.papertrans.cn/384/383445/383445.mp4
叢書名稱Algorithms and Combinatorics
圖書封面Titlebook: Geometric Algorithms and Combinatorial Optimization;  Martin Gr?tschel,László Lovász,Alexander Schrijver Book 19881st edition Springer-Verl
描述Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open
出版日期Book 19881st edition
關(guān)鍵詞Basis Reduction in Lattices; Basisreduktion bei Gittern; Combinatorics; Convexity; Ellipsoid Method; Elli
版次1
doihttps://doi.org/10.1007/978-3-642-97881-4
isbn_ebook978-3-642-97881-4Series ISSN 0937-5511 Series E-ISSN 2197-6783
issn_series 0937-5511
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書目名稱Geometric Algorithms and Combinatorial Optimization影響因子(影響力)




書目名稱Geometric Algorithms and Combinatorial Optimization影響因子(影響力)學科排名




書目名稱Geometric Algorithms and Combinatorial Optimization網(wǎng)絡(luò)公開度




書目名稱Geometric Algorithms and Combinatorial Optimization網(wǎng)絡(luò)公開度學科排名




書目名稱Geometric Algorithms and Combinatorial Optimization被引頻次




書目名稱Geometric Algorithms and Combinatorial Optimization被引頻次學科排名




書目名稱Geometric Algorithms and Combinatorial Optimization年度引用




書目名稱Geometric Algorithms and Combinatorial Optimization年度引用學科排名




書目名稱Geometric Algorithms and Combinatorial Optimization讀者反饋




書目名稱Geometric Algorithms and Combinatorial Optimization讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:04:25 | 只看該作者
地板
發(fā)表于 2025-3-22 08:00:53 | 只看該作者
5#
發(fā)表于 2025-3-22 10:00:50 | 只看該作者
6#
發(fā)表于 2025-3-22 13:39:09 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:01 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:44 | 只看該作者
Stable Sets in Graphs,graphs. (Alternative names for this problem used in the literature are vertex packing, or coclique, or independent set problem.) Our basic technique will be to look for various classes of inequalities valid for the stable set polytope, and then develop polynomial time algorithms to check if a given
9#
發(fā)表于 2025-3-23 02:44:12 | 只看該作者
10#
發(fā)表于 2025-3-23 06:54:18 | 只看該作者
0937-5511 It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open 978-3-642-97881-4Series ISSN 0937-5511 Series E-ISSN 2197-6783
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
六枝特区| 怀仁县| 洪泽县| 白朗县| 石嘴山市| 阿拉善左旗| 梁山县| 江源县| 轮台县| 高密市| 西平县| 巴塘县| 德保县| 鄂托克前旗| 利辛县| 分宜县| 宿迁市| 瑞安市| 榆树市| 芮城县| 沧州市| 清水河县| 长兴县| 区。| 红原县| 上思县| 桐乡市| 青阳县| 高州市| 涞水县| 金平| 荔浦县| 沛县| 莎车县| 云安县| 长丰县| 闻喜县| 镇原县| 株洲县| 辽阳县| 大新县|