找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geoinformatics and Modelling of Landslide Susceptibility and Risk; An RS & GIS-based Mo Sujit Mandal,Subrata Mondal Book 2019 Springer Natu

[復制鏈接]
樓主: advocate
21#
發(fā)表于 2025-3-25 04:03:27 | 只看該作者
Springer Nature Switzerland AG 2019
22#
發(fā)表于 2025-3-25 10:22:55 | 只看該作者
Geoinformatics and Modelling of Landslide Susceptibility and Risk978-3-030-10495-5Series ISSN 1863-5520 Series E-ISSN 1863-5539
23#
發(fā)表于 2025-3-25 14:40:39 | 只看該作者
https://doi.org/10.1007/978-3-030-10495-5Landslide Susceptibility and Risk; Geoinformatics and Landslide; Semi-quantitative Approaches and land
24#
發(fā)表于 2025-3-25 17:39:21 | 只看該作者
25#
發(fā)表于 2025-3-25 20:13:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:13 | 只看該作者
Slope Instability Analysis Using Morphometric Parameters: A Sub-watersheds Scale Study,the structure, the planform and the relief of basin which are being applied for the prioritization of watersheds. In the present study, an attempt has been made to prioritize sub-watersheds based on morphometric analysis in relation to slope instability. The base map of stream network were digitized
27#
發(fā)表于 2025-3-26 07:10:56 | 只看該作者
Geomorphic Diversity and Landslide Susceptibility: A Multi-criteria Evaluation Approach,to find out the role of drainage parameters and relief parameters in slope failure using drainage diversity (DD) and relief diversity (RD) models respectively. For that total 14 morphometric data layers were considered. The relationship of each data layers with landslide susceptibility was judge usi
28#
發(fā)表于 2025-3-26 12:17:20 | 只看該作者
Prediction of Landslide Susceptibility Using Bivariate Models,A) and statistical index model (SIM) and the preparation of landslide susceptibility maps of the Balason river basin of Darjeeling Himalaya using various geomorphic, hydrologic, and tectonic attributes such as elevation, slope, aspect, curvature, geology, geomorphology, soil, distance to lineament,
29#
發(fā)表于 2025-3-26 16:06:23 | 只看該作者
30#
發(fā)表于 2025-3-26 20:00:31 | 只看該作者
Machine Learning Models and Spatial Distribution of Landslide Susceptibility, tools machine learning model i.e. support vector machine (SVM) and artificial neural network model (ANNM). Fifteen landslide causative factors i.e. slope, aspect, curvature, elevation, geology, geomorphology, soil, distance to drainage, drainage density, distance to lineaments, lineament density, l
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 08:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高青县| 佛教| 名山县| 临泽县| 汪清县| 沛县| 海兴县| 兰坪| 高州市| 山阳县| 仙游县| 出国| 上蔡县| 龙海市| 康定县| 合肥市| 元江| 霸州市| 获嘉县| 噶尔县| 扶余县| 柳江县| 平凉市| 高碑店市| 怀安县| 余干县| 盐亭县| 临夏县| 永吉县| 忻城县| 修文县| 安多县| 玉龙| 太白县| 新闻| 策勒县| 玉环县| 邯郸县| 安泽县| 平顺县| 江源县|