找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic Beams in Eigenfunction Analysis; Yaiza Canzani,Jeffrey Galkowski Book 2023 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Thoracic
21#
發(fā)表于 2025-3-25 04:07:32 | 只看該作者
Unternehmenswahrnehmung am Kapitalmakt,This section gives an introduction to the concepts of structured and unstructured localizers. That is, localizers which respect the property of being a quasimode (at least locally) and those which do not. We discuss the key role played by the former in the method of geodesic beams and indicate the structure of the remainder of the book.
22#
發(fā)表于 2025-3-25 08:50:42 | 只看該作者
Die Komponenten des KreditspreadsIn this chapter, we introduce the semiclassical Laplacian, ., with principal symbol .. We show that its eigenfunctions are smooth, its spectrum is discrete, and that one can build an orthonormal basis of . consisting of Laplace eigenfunctions. The proofs in this section are inspired by the presentation in [Zwo12, Sect.?14.3].
23#
發(fā)表于 2025-3-25 12:49:49 | 只看該作者
,Die Dampf- und Kondensatent?ler,In this chapter, we discuss the tools at the heart of the geodesic beam analysis. That is, the construction of the beams themselves, as well as the corresponding improved estimates.
24#
發(fā)表于 2025-3-25 18:38:59 | 只看該作者
https://doi.org/10.1007/978-3-322-88009-3This chapter illustrates how to apply the geodesic beam techniques developed in Chap.?. to find effective pointwise bounds for Laplace eigenfunctions (Sect.?.), control averages of eigenfunctions over submanifolds (Sect.?.), bound . norms of eigenfunctions for . (Sect.?.) and find improvements on the remainder for the Weyl Law (see Sect.?.).
25#
發(fā)表于 2025-3-25 20:40:43 | 只看該作者
26#
發(fā)表于 2025-3-26 01:42:14 | 只看該作者
,Basic Properties of?Eigenfunctions and?Eigenvalues,In this chapter, we introduce the semiclassical Laplacian, ., with principal symbol .. We show that its eigenfunctions are smooth, its spectrum is discrete, and that one can build an orthonormal basis of . consisting of Laplace eigenfunctions. The proofs in this section are inspired by the presentation in [Zwo12, Sect.?14.3].
27#
發(fā)表于 2025-3-26 08:11:17 | 只看該作者
Geodesic Beam Tools,In this chapter, we discuss the tools at the heart of the geodesic beam analysis. That is, the construction of the beams themselves, as well as the corresponding improved estimates.
28#
發(fā)表于 2025-3-26 10:01:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:30:45 | 只看該作者
978-3-031-31588-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
30#
發(fā)表于 2025-3-26 19:52:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 临邑县| 永州市| 卓资县| 东明县| 康马县| 石柱| 句容市| 平安县| 额尔古纳市| 乌兰察布市| 长沙市| 西华县| 政和县| 林西县| 黄龙县| 株洲市| 阳春市| 格尔木市| 东乌珠穆沁旗| 多伦县| 大城县| 青浦区| 扬州市| 伊春市| 新晃| 兴山县| 内丘县| 仁寿县| 胶南市| 额尔古纳市| 南木林县| 平江县| 达州市| 伊吾县| 榆树市| 剑川县| 米易县| 苍山县| 喜德县| 永和县|