找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Theory for Cubic Graphs; Pouya Baniasadi,Vladimir Ejov,Michael Haythorpe Book 2016 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
查看: 23767|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:33:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Genetic Theory for Cubic Graphs
編輯Pouya Baniasadi,Vladimir Ejov,Michael Haythorpe
視頻videohttp://file.papertrans.cn/383/382637/382637.mp4
概述Includes supplementary material:
叢書名稱SpringerBriefs in Operations Research
圖書封面Titlebook: Genetic Theory for Cubic Graphs;  Pouya Baniasadi,Vladimir Ejov,Michael Haythorpe Book 2016 Springer International Publishing Switzerland 2
描述.This book was motivated by the notion that some of the underlying difficulty in challenging instances of graph-based problems (e.g., the Traveling Salesman Problem) may be “inherited” from simpler graphs which – in an appropriate sense – could be seen as “ancestors” of the given graph instance. The authors propose a partitioning of the set of unlabeled, connected cubic graphs into two disjoint subsets named genes and descendants, where the cardinality of the descendants dominates that of the genes. The key distinction between the two subsets is the presence of special edge cut sets, called cubic crackers, in the descendants..The book begins by proving that any given descendant may be constructed by starting from a finite set of genes and introducing the required cubic crackers through the use of six special operations, called breeding operations. It shows that each breeding operation is invertible, and these inverse operations are examined. It is therefore possible, for any given descendant, to identify a family of genes that could be used to generate the descendant. The authors refer to such a family of genes as a “complete family of ancestor genes” for that particular descendant
出版日期Book 2016
關(guān)鍵詞Cubic Graphs; Descendants; Genes; Graph Algorithms; Inherited Properties; Mutants
版次1
doihttps://doi.org/10.1007/978-3-319-19680-0
isbn_softcover978-3-319-19679-4
isbn_ebook978-3-319-19680-0Series ISSN 2195-0482 Series E-ISSN 2195-0504
issn_series 2195-0482
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Genetic Theory for Cubic Graphs影響因子(影響力)




書目名稱Genetic Theory for Cubic Graphs影響因子(影響力)學(xué)科排名




書目名稱Genetic Theory for Cubic Graphs網(wǎng)絡(luò)公開度




書目名稱Genetic Theory for Cubic Graphs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Genetic Theory for Cubic Graphs被引頻次




書目名稱Genetic Theory for Cubic Graphs被引頻次學(xué)科排名




書目名稱Genetic Theory for Cubic Graphs年度引用




書目名稱Genetic Theory for Cubic Graphs年度引用學(xué)科排名




書目名稱Genetic Theory for Cubic Graphs讀者反饋




書目名稱Genetic Theory for Cubic Graphs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:31:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:04:08 | 只看該作者
地板
發(fā)表于 2025-3-22 06:37:33 | 只看該作者
5#
發(fā)表于 2025-3-22 12:20:02 | 只看該作者
https://doi.org/10.1007/978-3-319-19680-0Cubic Graphs; Descendants; Genes; Graph Algorithms; Inherited Properties; Mutants
6#
發(fā)表于 2025-3-22 15:14:39 | 只看該作者
Pouya Baniasadi,Vladimir Ejov,Michael HaythorpeIncludes supplementary material:
7#
發(fā)表于 2025-3-22 20:57:18 | 只看該作者
8#
發(fā)表于 2025-3-22 22:24:52 | 只看該作者
Integrated Planning and Learning,of the descendant correspond to the properties of those genes. In particular we consider the properties of Hamiltonicity, bipartiteness and planarity. In all three cases we prove that a descendant may only possess the property if all of its ancestor genes do. In the case of bipartiteness and planari
9#
發(fā)表于 2025-3-23 04:50:27 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
轮台县| 惠东县| 邯郸市| 会宁县| 廊坊市| 绥滨县| 齐河县| 大兴区| 中超| 德兴市| 霍邱县| 双桥区| 巴塘县| 抚顺市| 辰溪县| 南召县| 行唐县| 那坡县| 乐平市| 左云县| 北川| 菏泽市| 靖远县| 涞水县| 南平市| 神木县| 红桥区| 九寨沟县| 克山县| 庆城县| 临漳县| 浦江县| 武胜县| 罗甸县| 大渡口区| 洛宁县| 廉江市| 开江县| 仙桃市| 丰顺县| 南城县|