找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Programming for Production Scheduling; An Evolutionary Lear Fangfang Zhang,Su Nguyen,Mengjie Zhang Book 2021 The Editor(s) (if appl

[復制鏈接]
樓主: 恰當
21#
發(fā)表于 2025-3-25 03:26:06 | 只看該作者
978-981-16-4861-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
22#
發(fā)表于 2025-3-25 10:25:36 | 只看該作者
Genetic Programming for Production Scheduling978-981-16-4859-5Series ISSN 2730-9908 Series E-ISSN 2730-9916
23#
發(fā)表于 2025-3-25 12:24:27 | 只看該作者
Fangfang Zhang,Su Nguyen,Mengjie ZhangPresents theoretical aspects and applications of genetic programming for production scheduling.Explores the modern and unique interfaces between operations research and machine learning.Offers an intr
24#
發(fā)表于 2025-3-25 19:45:57 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:36 | 只看該作者
26#
發(fā)表于 2025-3-26 01:46:59 | 只看該作者
Learning Schedule Construction Heuristicseduling algorithms. Details about attributes extracted from production data and representations of scheduling construction heuristics are provided in this chapter. The advantages and disadvantages of each representation are analysed, and the generalisation of evolved heuristics is examined by using
27#
發(fā)表于 2025-3-26 07:09:38 | 只看該作者
Learning Schedule Improvement Heuristicss presented in this book and other meta-heuristics in the literature. Extended attribute sets and several evaluation mechanisms are introduced in this chapter to allow GP to evolve scheduling improvement heuristics. Experiment results show that the evolved scheduling improvement heuristics outperfor
28#
發(fā)表于 2025-3-26 12:04:46 | 只看該作者
Learning to Augment Operations Research Algorithmsing. A simple genetic programming algorithm is introduced to evolve variable selectors for optimisation solvers to reduce the computational efforts required to obtain high-quality or optimal solutions for production scheduling. The optimisation solver enhanced by the evolved variable selectors can f
29#
發(fā)表于 2025-3-26 14:50:03 | 只看該作者
Representations with Multi-tree and Cooperative Coevolutionexible job shop scheduling. Two strategies are introduced, one is the genetic programming with cooperative coevolution, the other is the genetic programming with multi-tree representation. The results show the advantages and disadvantages of these two strategies over learning two rules simultaneousl
30#
發(fā)表于 2025-3-26 17:00:17 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 17:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永济市| 宜川县| 崇阳县| 大足县| 洪泽县| 邛崃市| 郸城县| 绍兴市| 扎囊县| 宾阳县| 彭山县| 宣化县| 肃北| 遂川县| 泰和县| 仲巴县| 城步| 微山县| 共和县| 叙永县| 罗平县| 牡丹江市| 巍山| 新野县| 周至县| 固镇县| 蓬安县| 云林县| 霍邱县| 恭城| 朝阳县| 黎川县| 阳江市| 库尔勒市| 苍南县| 开封县| 玉林市| 禄丰县| 务川| 湛江市| 呈贡县|