找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Programming for Production Scheduling; An Evolutionary Lear Fangfang Zhang,Su Nguyen,Mengjie Zhang Book 2021 The Editor(s) (if appl

[復制鏈接]
查看: 55882|回復: 51
樓主
發(fā)表于 2025-3-21 19:41:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Genetic Programming for Production Scheduling
副標題An Evolutionary Lear
編輯Fangfang Zhang,Su Nguyen,Mengjie Zhang
視頻videohttp://file.papertrans.cn/383/382618/382618.mp4
概述Presents theoretical aspects and applications of genetic programming for production scheduling.Explores the modern and unique interfaces between operations research and machine learning.Offers an intr
叢書名稱Machine Learning: Foundations, Methodologies, and Applications
圖書封面Titlebook: Genetic Programming for Production Scheduling; An Evolutionary Lear Fangfang Zhang,Su Nguyen,Mengjie Zhang Book 2021 The Editor(s) (if appl
描述.This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP’s performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning te
出版日期Book 2021
關鍵詞Production Scheduling; Machine Learning; Hyper-Heuristic Learning; Genetic Programming; Multitask Optimi
版次1
doihttps://doi.org/10.1007/978-981-16-4859-5
isbn_softcover978-981-16-4861-8
isbn_ebook978-981-16-4859-5Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Genetic Programming for Production Scheduling影響因子(影響力)




書目名稱Genetic Programming for Production Scheduling影響因子(影響力)學科排名




書目名稱Genetic Programming for Production Scheduling網絡公開度




書目名稱Genetic Programming for Production Scheduling網絡公開度學科排名




書目名稱Genetic Programming for Production Scheduling被引頻次




書目名稱Genetic Programming for Production Scheduling被引頻次學科排名




書目名稱Genetic Programming for Production Scheduling年度引用




書目名稱Genetic Programming for Production Scheduling年度引用學科排名




書目名稱Genetic Programming for Production Scheduling讀者反饋




書目名稱Genetic Programming for Production Scheduling讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:45:35 | 只看該作者
Machine Learning: Foundations, Methodologies, and Applications382618.jpg
板凳
發(fā)表于 2025-3-22 01:10:50 | 只看該作者
地板
發(fā)表于 2025-3-22 08:22:05 | 只看該作者
,Met diabetes ‘moet’ je gewoon leven,roaches, especially genetic programming as well as the overview to use genetic programming for production scheduling. In addition, this chapter introduces interpretable machine learning. Last, the terminology and organisation of the book are introduced to make it easy for readers to follow this book.
5#
發(fā)表于 2025-3-22 08:54:19 | 只看該作者
6#
發(fā)表于 2025-3-22 16:04:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:35:02 | 只看該作者
De ontwikkeling van de grove motoriek,exact methods, heuristics, and hyper-heuristics, with a focus on hyper-heuristics in evolutionary learning. This chapter also describes how to use scheduling heuristics to handle job shop scheduling problems. In addition, how to use genetic programming to learn scheduling heuristics is introduced in
8#
發(fā)表于 2025-3-23 01:11:00 | 只看該作者
9#
發(fā)表于 2025-3-23 04:09:48 | 只看該作者
https://doi.org/10.1007/978-90-313-6299-8s presented in this book and other meta-heuristics in the literature. Extended attribute sets and several evaluation mechanisms are introduced in this chapter to allow GP to evolve scheduling improvement heuristics. Experiment results show that the evolved scheduling improvement heuristics outperfor
10#
發(fā)表于 2025-3-23 07:24:21 | 只看該作者
https://doi.org/10.1007/978-90-368-0727-2ing. A simple genetic programming algorithm is introduced to evolve variable selectors for optimisation solvers to reduce the computational efforts required to obtain high-quality or optimal solutions for production scheduling. The optimisation solver enhanced by the evolved variable selectors can f
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 15:53
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
红安县| 龙门县| 泰兴市| 九寨沟县| 怀仁县| 西宁市| 樟树市| 临夏市| 凤凰县| 昭通市| 昌平区| 长丰县| 商城县| 垦利县| 育儿| 惠来县| 兴城市| 曲靖市| 义乌市| 江口县| 丰城市| 东兴市| 喀什市| 泰顺县| 巴塘县| 涞水县| 石首市| 竹北市| 大埔县| 仁布县| 淮北市| 永登县| 无极县| 万载县| 宁津县| 黔江区| 巴南区| 广水市| 金溪县| 讷河市| 滁州市|