找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Programming Theory and Practice XX; Stephan Winkler,Leonardo Trujillo,Ting Hu Book 2024 The Editor(s) (if applicable) and The Auth

[復制鏈接]
樓主: 懇求
21#
發(fā)表于 2025-3-25 05:57:35 | 只看該作者
Shape-constrained Symbolic Regression: Real-World Applications in Magnetization, Extrusion and DataSR), which represents the models as short interpretable mathematical formulas. The integration of knowledge into symbolic regression via shape constraints is discussed alongside three real-world applications: modeling magnetization curves, modeling twin-screw extruders and model-based data validation.
22#
發(fā)表于 2025-3-25 08:01:50 | 只看該作者
Stephan Winkler,Leonardo Trujillo,Ting HuExplores the intersection of GP and evolutionary computation, with machine learning and deep learning methods.Provides a unique combination of theoretical contributions and state-of-the-art real-world
23#
發(fā)表于 2025-3-25 15:40:39 | 只看該作者
24#
發(fā)表于 2025-3-25 16:30:36 | 只看該作者
25#
發(fā)表于 2025-3-25 22:39:10 | 只看該作者
https://doi.org/10.1007/978-981-99-8413-8Genetic Programming; Genetic Programming Applications; Model Discovery; Ethics in Computer Science; Symb
26#
發(fā)表于 2025-3-26 03:34:30 | 只看該作者
27#
發(fā)表于 2025-3-26 04:57:18 | 只看該作者
Genetic Programming Theory and Practice XX978-981-99-8413-8Series ISSN 1932-0167 Series E-ISSN 1932-0175
28#
發(fā)表于 2025-3-26 12:21:08 | 只看該作者
https://doi.org/10.1007/978-3-030-73924-9as rebuilt from the ground up to be more modular, easier to maintain, and easier to expand. TPOT2 comes with new features and optimizations, such as a more flexible graph-based representation of Scikit-Learn pipelines and the ability to specify various aspects of the evolutionary run. Using experime
29#
發(fā)表于 2025-3-26 16:03:39 | 只看該作者
South of the Northeast Kingdom,al topology. To achieve more clarity in how a spatial topology impacts performance and complexity we introduce a spatial topology to a pairwise dominance coevolutionary algorithm named PDCoEA. The new algorithm is called STPDCoEA. We use a methodology for consistent algorithm comparison to empirical
30#
發(fā)表于 2025-3-26 18:30:57 | 只看該作者
https://doi.org/10.1057/9781137305190 systems, decision tree genetic programming and SEE-Segment. Active learning was shown to improve the rate and consistency at which good models are found while reducing the required number of training samples to achieve good solutions in both ML systems. The importance of diversity in ensembles for
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 22:43
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吴桥县| 新安县| 华池县| 贵港市| 华容县| 韶关市| 淮滨县| 霸州市| 文登市| 兴化市| 三河市| 鹤岗市| 米易县| 四平市| 平安县| 奉节县| 新竹县| 台山市| 潼关县| 图们市| 库尔勒市| 通江县| 西藏| 宜丰县| 综艺| 河津市| 永胜县| 根河市| 甘洛县| 环江| 林口县| 元谋县| 辰溪县| 江孜县| 凌海市| 富蕴县| 赞皇县| 奉新县| 桐庐县| 古田县| 罗平县|