找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Programming; 23rd European Confer Ting Hu,Nuno Louren?o,Federico Divina Conference proceedings 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: proptosis
31#
發(fā)表于 2025-3-26 23:56:34 | 只看該作者
https://doi.org/10.1007/978-3-663-09553-8genetic algorithms to evolve such lookup tables for any smooth function. It provides double precision and calculates most values to the closest bit, and outperforms reference implementations in most cases with competitive run-time performance.
32#
發(fā)表于 2025-3-27 01:27:15 | 只看該作者
https://doi.org/10.1007/978-3-322-98828-7n a single function optimisation landscape, using random transformations to discourage overfitting. They are then tested for generality on larger versions of the same problem, and on other continuous-valued problems. In most cases, the optimisers generalise well to the larger problems. Surprisingly,
33#
發(fā)表于 2025-3-27 08:31:17 | 只看該作者
https://doi.org/10.1007/978-3-663-02151-3ved landscape rules – using GA and GP. To this end, we employ three different optimization strategies: a single-objective approach carried out with GA and GP where only the reversibility constraint of marker CA is considered, a multi-objective approach based on GP where both reversibility and the Ha
34#
發(fā)表于 2025-3-27 13:29:09 | 只看該作者
35#
發(fā)表于 2025-3-27 14:53:59 | 只看該作者
https://doi.org/10.1007/978-3-476-05580-4ired by the success of such methods, we have developed a new Genetic Programming method called Ensemble GP. The evolutionary cycle of Ensemble GP follows the same steps as other Genetic Programming systems, but with differences in the population structure, fitness evaluation and genetic operators. W
36#
發(fā)表于 2025-3-27 18:47:10 | 只看該作者
,Der dritte Tag: Sch?pfungsdrang,on Dynamic Target (SGP-DT) that divides the search problem into multiple GP runs. The evolution in each run is guided by a new (dynamic) target based on the residual errors. To obtain the final solution, SGP-DT combines the solutions of each run using linear scaling. SGP-DT presents a new methodolog
37#
發(fā)表于 2025-3-28 00:01:04 | 只看該作者
https://doi.org/10.1007/978-3-662-63067-9 been well studied. In this paper, we analyze how different selection algorithms influence modularity in the population of evolving programs. In particular, we observe how the number of individuals with some form of modular structure, i.e., the presence of code blocks executed multiple times, change
38#
發(fā)表于 2025-3-28 04:53:16 | 只看該作者
39#
發(fā)表于 2025-3-28 06:40:02 | 只看該作者
40#
發(fā)表于 2025-3-28 11:18:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 开原市| 根河市| 平乐县| 瑞金市| 宁都县| 扶沟县| 沂水县| 杭锦后旗| 武冈市| 东平县| 基隆市| 普格县| 保靖县| 孙吴县| 永靖县| 云龙县| 瑞安市| 砚山县| 南川市| 西平县| 泸溪县| 江孜县| 句容市| 东方市| 三河市| 永顺县| 巩义市| 阿克陶县| 饶平县| 吉隆县| 共和县| 阜阳市| 日照市| 微山县| 靖宇县| 随州市| 延川县| 卓资县| 华亭县| 浮山县|