找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Topics in Pure and Computational Complex Analysis; Santosh Joshi,Michael Dorff,Indrajit Lahiri Book 2014 Springer India 2014 Compl

[復制鏈接]
樓主: 多話
31#
發(fā)表于 2025-3-27 00:51:48 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:37 | 只看該作者
https://doi.org/10.1007/978-81-322-2113-5Complex analysis; Geometric function theory; Harmonic mappings; Integral operators; Nevanlinna theory; Va
33#
發(fā)表于 2025-3-27 07:39:48 | 只看該作者
34#
發(fā)表于 2025-3-27 10:30:48 | 只看該作者
35#
發(fā)表于 2025-3-27 15:37:32 | 只看該作者
Nutzen eines Unternehmensdatenmodellshe location of the zeros of polynomials. In this article we begin with the earliest results of Enestr?m and Kakeya and conclude this by presenting some of the recent results on this subject. Our article is expository in nature.
36#
發(fā)表于 2025-3-27 21:12:03 | 只看該作者
,Enestr?m–Kakeya Theorem and Some of Its Generalizations,he location of the zeros of polynomials. In this article we begin with the earliest results of Enestr?m and Kakeya and conclude this by presenting some of the recent results on this subject. Our article is expository in nature.
37#
發(fā)表于 2025-3-27 22:31:14 | 只看該作者
38#
發(fā)表于 2025-3-28 02:05:48 | 只看該作者
39#
發(fā)表于 2025-3-28 07:42:51 | 只看該作者
Starlikeness and Convexity of Certain Integral Transforms by using Duality Technique, involving starlike and convex functions. Particular values of . give rise to well-known integral operators. Investigation of the parameters for such values leads to interesting results in univalent function theory. This chapter outlines all the possible results available in the literature in this direction to provide the reader an overview.
40#
發(fā)表于 2025-3-28 13:23:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
名山县| 梅州市| 吉林省| 惠来县| 旅游| 淮北市| 光山县| 左云县| 手机| 龙陵县| 忻州市| 中西区| 常宁市| 祥云县| 吉安市| 雷山县| 措美县| 新田县| 缙云县| 遵义县| 临沭县| 卓尼县| 永安市| 利川市| 塘沽区| 封开县| 天峻县| 嘉荫县| 团风县| 卓资县| 梧州市| 疏附县| 调兵山市| 上栗县| 富蕴县| 永泰县| 衡山县| 沈丘县| 山丹县| 文水县| 游戏|