找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generating Families in the Restricted Three-Body Problem; Michel Hénon Book 1997 Springer-Verlag Berlin Heidelberg 1997 astronomy.bifurcat

[復制鏈接]
樓主: hypothyroidism
21#
發(fā)表于 2025-3-25 05:34:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:21 | 只看該作者
978-3-662-14156-4Springer-Verlag Berlin Heidelberg 1997
23#
發(fā)表于 2025-3-25 14:50:55 | 只看該作者
24#
發(fā)表于 2025-3-25 18:35:14 | 只看該作者
25#
發(fā)表于 2025-3-25 20:44:12 | 只看該作者
Generating Orbits of the First Species,plete classification has been achieved only recently with the work of Bruno (1976; 1980a; 1994, Chap. VII) on asymmetric orbits. A review of the results up to 1975 can be found in Hagihara (1975, pp. 264 to 339).
26#
發(fā)表于 2025-3-26 01:40:21 | 只看該作者
Generating Orbits of the Second Species,t is periodic, it has an infinity of collisions. (Note that there can be more than one collision per period.) The collisions separate the orbit into pieces, which we call .. Two consecutive arcs join at a collision; their tangents at the collision form an angle, generally different from zero. This a
27#
發(fā)表于 2025-3-26 04:46:23 | 只看該作者
Generating Orbits of the Third Species,es to a point. The period . can probably take any positive value (see below). Thus, generating orbits of the third species can be formally considered as forming a single one-parameter family, which we call the . This family is of a peculiar kind: all orbits are identical in shape since they reduce t
28#
發(fā)表于 2025-3-26 12:32:37 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:17 | 只看該作者
30#
發(fā)表于 2025-3-26 19:36:06 | 只看該作者
0940-7677 recipes are given. Their use is illustrated by determining a number of generating families, associated with natural families of the restricted problem, and comparing them with numerical computations in the Earth-Moon and Sun-Jupiter case.978-3-662-14156-4978-3-540-69650-6Series ISSN 0940-7677
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 20:45
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
万山特区| 青田县| 垫江县| 海安县| 舟山市| 井冈山市| 长子县| 巴彦县| 贡嘎县| 虞城县| 什邡市| 津南区| 恩平市| 阿巴嘎旗| 瓦房店市| 儋州市| 平潭县| 贡觉县| 舒城县| 云南省| 凤山县| 香港| 崇义县| 镇沅| 雅安市| 隆尧县| 新安县| 沾益县| 张家口市| 滁州市| 巴南区| 工布江达县| 金阳县| 安多县| 静海县| 泸水县| 波密县| 峡江县| 禹州市| 若尔盖县| 分宜县|