找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence; Marina L. Gavrilova Book 2008 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: centipede
41#
發(fā)表于 2025-3-28 17:47:42 | 只看該作者
The ,-Shape and ,-Complex for Analysis of Molecular Structuressis of molecular structures since the morphology of a molecule has been recognized as one of the most important factors which determines the functions of the molecule..To understand the morphology of molecules, various computational methodologies have been extensively investigated like the Voronoi d
42#
發(fā)表于 2025-3-28 21:45:18 | 只看該作者
Computational Geometry Analysis of Quantum State Space and Its Applicationsion of a structure of a quantum state space. More properly, we investigate the Voronoi diagrams with respect to the divergence, Fubini-Study distance, Bures distance, geodesic distance and Euclidean distance..As an application of it, we explain an effective algorithm to compute the Holevo capacity o
43#
發(fā)表于 2025-3-29 00:14:30 | 只看該作者
44#
發(fā)表于 2025-3-29 03:05:05 | 只看該作者
A Methodology for Automated Cartographic Data Input, Drawing and Editing Using Kinetic Delaunay/Voropoint and line Delaunay triangulation and the Voronoi diagram. It allows one to automate some parts of the manual digitization process and the topological editing of maps that preserve map updates. The manual digitization process is replaced by computer assisted skeletonization using scanned paper m
45#
發(fā)表于 2025-3-29 10:55:55 | 只看該作者
Density-Based Clustering Based on Topological Properties of the Data Setis chapter utilizes the Voronoi diagram to develop a simple and efficient solution to compute such a path. By setting the clearance to zero, we obtain a very good approximation of the shortest path. We compare performance of our algorithm to other existing methods.
46#
發(fā)表于 2025-3-29 13:48:35 | 只看該作者
47#
發(fā)表于 2025-3-29 17:36:36 | 只看該作者
Constructing Centroidal Voronoi Tessellations on Surface Meshesplies that the convergence speed and the quality of the results depend on the initialization methods. In this chapter, we briefly describe how to construct centroidal Voronoi tessellations on surface meshes and propose efficient initialization methods. The proposed methods try to make initial tessel
48#
發(fā)表于 2025-3-29 21:36:47 | 只看該作者
49#
發(fā)表于 2025-3-30 03:08:32 | 只看該作者
Higher Order Voronoi Diagrams and Distance Functions in Art and Visualizationng higher order Voronoi diagrams is more difficult than ordinary Voronoi diagrams and requires intelligent solutions. In this chapter we discuss several rendering techniques using color, line and texture to visualize higher order Voronoi diagrams in two and three dimensions. Such approaches have sev
50#
發(fā)表于 2025-3-30 04:50:24 | 只看該作者
Robust Point-Location in Generalized Voronoi Diagrams solution for expressions of degree four. A natural question is what can be done using expression of smaller degree. We apply polyhedral metrics for this task. In general dimensions two Minkowski metrics can be used: .. (Manhattan metric) and .. (supremum metric). The approximation factor is . and t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南雄市| 长兴县| 库尔勒市| 阿勒泰市| 万全县| 岳阳县| 沂水县| 义马市| 孝义市| 敦煌市| 屯昌县| 舟山市| 民和| 阿合奇县| 桂阳县| 乌海市| 崇信县| 池州市| 汾阳市| 虎林市| 苏尼特右旗| 东光县| 东源县| 和田市| 蓬溪县| 颍上县| 肥乡县| 甘泉县| 家居| 平潭县| 马公市| 勃利县| 淄博市| 玛纳斯县| 高碑店市| 江城| 泰州市| 资兴市| 阿克| 佳木斯市| 江北区|