找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Statistical Thermodynamics; Thermodynamics of Pr Themis Matsoukas Book 2018 Springer Nature Switzerland AG 2018 statistical the

[復(fù)制鏈接]
樓主: rupture
11#
發(fā)表于 2025-3-23 12:09:36 | 只看該作者
12#
發(fā)表于 2025-3-23 15:54:57 | 只看該作者
13#
發(fā)表于 2025-3-23 18:07:58 | 只看該作者
https://doi.org/10.1007/978-3-030-04149-6statistical thermodynamics; population balances; The Giant Cluster; thermodynamics of continuous distri
14#
發(fā)表于 2025-3-24 00:08:43 | 只看該作者
Contemporary Topics in Polymer ScienceIf we increase the size of the cluster ensemble at fixed mean, the ensemble becomes a container of every possible cluster distributions . with fixed mean. We call this . and define it by the condition
15#
發(fā)表于 2025-3-24 03:30:55 | 只看該作者
New Phosphorus-Containing Bisimide Resins,The cluster ensemble is inherently discrete but when the characteristic cluster size is much larger than the unit of the ensemble, the MPD may be treated as a continuous variable. We define the continuous limit by the condition
16#
發(fā)表于 2025-3-24 07:54:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:00:17 | 只看該作者
Thermodynamic Limit (ThL),If we increase the size of the cluster ensemble at fixed mean, the ensemble becomes a container of every possible cluster distributions . with fixed mean. We call this . and define it by the condition
18#
發(fā)表于 2025-3-24 17:12:46 | 只看該作者
The Most Probable Distribution in the Continuous Limit,The cluster ensemble is inherently discrete but when the characteristic cluster size is much larger than the unit of the ensemble, the MPD may be treated as a continuous variable. We define the continuous limit by the condition
19#
發(fā)表于 2025-3-24 20:19:17 | 只看該作者
Fragmentation and Shattering,Binary fragmentation is the reverse process of binary aggregation: a cluster with . monomers splits into two clusters with masses . and .???. such that 1?≤?.?≤?.???1. This is represented schematically by the irreversible mass-conserving reaction
20#
發(fā)表于 2025-3-24 23:17:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨鹿县| 汉沽区| 佛冈县| 海盐县| 崇州市| 琼结县| 本溪市| 龙里县| 桓台县| 峨边| 五台县| 叙永县| 寿阳县| 南涧| 广州市| 武清区| 信丰县| 益阳市| 洛宁县| 剑川县| 延川县| 保定市| 威海市| 安塞县| 汪清县| 田林县| 应用必备| 红原县| 潞城市| 陆河县| 外汇| 长宁县| 青龙| 鸡西市| 永胜县| 翼城县| 上蔡县| 全州县| 晋宁县| 博野县| 上犹县|