找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Solutions of First Order PDEs; The Dynamical Optimi Andre? I. Subbotin Book 1995 Springer Science+Business Media New York 1995

[復(fù)制鏈接]
查看: 55542|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:02:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Solutions of First Order PDEs
副標(biāo)題The Dynamical Optimi
編輯Andre? I. Subbotin
視頻videohttp://file.papertrans.cn/383/382253/382253.mp4
叢書名稱Systems & Control: Foundations & Applications
圖書封面Titlebook: Generalized Solutions of First Order PDEs; The Dynamical Optimi Andre? I. Subbotin Book 1995 Springer Science+Business Media New York 1995
出版日期Book 1995
關(guān)鍵詞equation; function; mathematics; optimal control; optimization; partial differential equations
版次1
doihttps://doi.org/10.1007/978-1-4612-0847-1
isbn_softcover978-1-4612-6920-5
isbn_ebook978-1-4612-0847-1Series ISSN 2324-9749 Series E-ISSN 2324-9757
issn_series 2324-9749
copyrightSpringer Science+Business Media New York 1995
The information of publication is updating

書目名稱Generalized Solutions of First Order PDEs影響因子(影響力)




書目名稱Generalized Solutions of First Order PDEs影響因子(影響力)學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs網(wǎng)絡(luò)公開度




書目名稱Generalized Solutions of First Order PDEs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs被引頻次




書目名稱Generalized Solutions of First Order PDEs被引頻次學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs年度引用




書目名稱Generalized Solutions of First Order PDEs年度引用學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs讀者反饋




書目名稱Generalized Solutions of First Order PDEs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:21 | 只看該作者
,Cauchy Problems for Hamilton—Jacobi Equations,blems can be proved. The Cauchy problem for Hamilton-Jacobi equation is examined in this chapter. Proofs of uniqueness and existence theorems are based on the property of weak invariance of minimax solutions with respect to characteristic inclusions. These inclusions are considered in the present se
板凳
發(fā)表于 2025-3-22 00:43:57 | 只看該作者
地板
發(fā)表于 2025-3-22 08:35:40 | 只看該作者
Victor Nussenzweig,Carolyn S. Pincus next sections. It can be seen from the proofs that these theorems actually provide criteria for the stability of solutions with respect to small perturbations of the Hamiltonian and the terminal function.
5#
發(fā)表于 2025-3-22 09:49:55 | 只看該作者
6#
發(fā)表于 2025-3-22 13:33:04 | 只看該作者
,Cauchy Problems for Hamilton—Jacobi Equations, next sections. It can be seen from the proofs that these theorems actually provide criteria for the stability of solutions with respect to small perturbations of the Hamiltonian and the terminal function.
7#
發(fā)表于 2025-3-22 17:19:27 | 只看該作者
Differential Games,esence of disturbances. As an illustration we can mention the problems of control of an aircraft landing and takeoff in the presence of the so-called windshear, when the aircraft is subjected to wind bursts. Analysis of differential games can help in elaboration of control algorithms for this and similar problems.
8#
發(fā)表于 2025-3-23 01:17:13 | 只看該作者
Monoclonal Antibodies to Tumor Antigens,istic inclusions. This property can be given with the help of apparently different criteria, which are formulated in Sections 2 and 3. The equivalence of these criteria and the equivalence of minimax and viscosity solutions are proven in Section 4.
9#
發(fā)表于 2025-3-23 02:05:49 | 只看該作者
10#
發(fā)表于 2025-3-23 05:40:21 | 只看該作者
Antigen-Binding Receptors on Lymphocytes,The minimax solution approach can be used for studying various types of first-order PDE’s with boundary and terminal (initial) conditions. In Chapter II, results concerning Cauchy problems for Hamilton-Jacobi equations were presented. In this chapter we consider some other applications of the approach.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定陶县| 武山县| 渑池县| 金阳县| 宜春市| 清远市| 潼南县| 湛江市| 乌鲁木齐县| 贵南县| 黔西| 缙云县| 东乌| 张家界市| 鹿泉市| 和静县| 阿拉善右旗| 莆田市| 沁阳市| 明水县| 驻马店市| 清河县| 靖安县| 孝昌县| 贺兰县| 涡阳县| 淮北市| 化隆| 南雄市| 鹤壁市| 平武县| 东港市| 友谊县| 海盐县| 临海市| 池州市| 龙海市| 西峡县| 孝感市| 松溪县| 鸡东县|