找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Hyperbolic Secant Distributions; With Applications to Matthias J. Fischer Book 2014 The Author(s) 2014 62E15, 62P20, 91G70, 91B

[復(fù)制鏈接]
查看: 27158|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:46:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Generalized Hyperbolic Secant Distributions
副標(biāo)題With Applications to
編輯Matthias J. Fischer
視頻videohttp://file.papertrans.cn/383/382213/382213.mp4
概述The first monograph to discuss generalized hyperbolic secant distributions.Includes a comprehensive theoretical and empirical comparison between all generalized hyperbolic secant families.The chapter
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Generalized Hyperbolic Secant Distributions; With Applications to Matthias J. Fischer Book 2014 The Author(s) 2014 62E15, 62P20, 91G70, 91B
描述?Among the symmetrical distributions with an infinite domain, the most popular alternative to the normal variant is the logistic distribution as well as the Laplace or the double exponential distribution, which was first introduced in 1774. Occasionally, the Cauchy distribution is also used. Surprisingly, the hyperbolic secant distribution has led a charmed life, although Manoukian and Nadeau had already stated in 1988 that “... the hyperbolic-secant distribution ...?has not received sufficient attention in the published literature and may be useful for students and practitioners.” During the last few years, however, several generalizations of the hyperbolic secant distribution have become popular in the context of financial return data because of its excellent fit. Nearly all of them are summarized within this Springer Brief.
出版日期Book 2014
關(guān)鍵詞62E15, 62P20, 91G70, 91B70, 91B84; asymmetry; distributions; financial returns; heavy tails; quantitative
版次1
doihttps://doi.org/10.1007/978-3-642-45138-6
isbn_softcover978-3-642-45137-9
isbn_ebook978-3-642-45138-6Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s) 2014
The information of publication is updating

書目名稱Generalized Hyperbolic Secant Distributions影響因子(影響力)




書目名稱Generalized Hyperbolic Secant Distributions影響因子(影響力)學(xué)科排名




書目名稱Generalized Hyperbolic Secant Distributions網(wǎng)絡(luò)公開度




書目名稱Generalized Hyperbolic Secant Distributions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Hyperbolic Secant Distributions被引頻次




書目名稱Generalized Hyperbolic Secant Distributions被引頻次學(xué)科排名




書目名稱Generalized Hyperbolic Secant Distributions年度引用




書目名稱Generalized Hyperbolic Secant Distributions年度引用學(xué)科排名




書目名稱Generalized Hyperbolic Secant Distributions讀者反饋




書目名稱Generalized Hyperbolic Secant Distributions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:59:57 | 只看該作者
K. E. Sweetman,P. S. Maitland,A. A. Lylenctions has a simple form. In contrast to Rieck and Nedelman (2008) and Jones and Pewsey?[.], who apply the .transformation and .transformation, respectively, to the classical Gaussian distribution, this chapter is dedicated to . and .transformed hyperbolic secant distributions which are the subject
板凳
發(fā)表于 2025-3-22 01:46:07 | 只看該作者
地板
發(fā)表于 2025-3-22 07:40:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:26:24 | 只看該作者
6#
發(fā)表于 2025-3-22 14:05:06 | 只看該作者
The BHS Distribution Family,tribution. In contrast to the Beta-normal distribution and to the Beta-Student-t distribution, BHS densities are always unimodal and all moments exist. In contrast to the Beta-logistic distribution, the BHS distribution is more flexible regarding the range of skewness and leptokurtosis combinations.
7#
發(fā)表于 2025-3-22 17:49:26 | 只看該作者
2191-544X ween all generalized hyperbolic secant families.The chapter ?Among the symmetrical distributions with an infinite domain, the most popular alternative to the normal variant is the logistic distribution as well as the Laplace or the double exponential distribution, which was first introduced in 1774.
8#
發(fā)表于 2025-3-22 23:03:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:40 | 只看該作者
https://doi.org/10.5822/978-1-61091-523-6s re-examined by [.] who also derived additional properties. Based on the GSH family, there are three different proposals in the literature—related to Fischer and Vaughan [.], Fischer [.], and Vaughan [.]—how to additionally introduce skewness which are discussed within this chapter.
10#
發(fā)表于 2025-3-23 06:35:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莆田市| 兴国县| 龙门县| 临沧市| 开原市| 玉屏| 鲁甸县| 北碚区| 长兴县| 濉溪县| 松阳县| 通城县| 体育| 建始县| 崇礼县| 年辖:市辖区| 广州市| 武乡县| 开江县| 永和县| 六枝特区| 东丰县| 姚安县| 依兰县| 大关县| 福建省| 花莲县| 长乐市| 屏南县| 库伦旗| 大足县| 禄丰县| 绵竹市| 田阳县| 容城县| 鄂尔多斯市| 阜南县| 临沂市| 清远市| 旬阳县| 灵台县|