找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Functions Theory and Technique; Theory and Technique Ram P. Kanwal Book 19982nd edition Birkh?user Boston 1998 Boundary value p

[復(fù)制鏈接]
樓主: Novice
21#
發(fā)表于 2025-3-25 07:13:08 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:13 | 只看該作者
23#
發(fā)表于 2025-3-25 13:56:16 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:38 | 只看該作者
The Schwartz-Sobolev Theory of Distributions,tance ., of . from the origin, is . = |.| = (. + . + ... + .).. Let . be an .-tuple of nonnegative integers, . = (., .,..., .), the so-called . of order .; then we define . and . where . = ?/?., . = 1, 2,..., .. For the one-dimensional case . reduces to .. Furthermore, if any component of . is zero
25#
發(fā)表于 2025-3-25 21:02:28 | 只看該作者
26#
發(fā)表于 2025-3-26 01:58:32 | 只看該作者
27#
發(fā)表于 2025-3-26 04:42:05 | 只看該作者
28#
發(fā)表于 2025-3-26 08:41:28 | 只看該作者
Direct Products and Convolutions of Distributions,spectively. Then a point in the Cartesian product . = . × . is (.) = (.,..., ., .,..., .). Furthermore, let us denote by ., ., and .the spaces of test functions with compact support in ., ., and ., respectively. When . (.) and .(.) are locally integrable functions in the spaces . and ., then the fun
29#
發(fā)表于 2025-3-26 16:03:19 | 只看該作者
The Laplace Transform,is variable in this chapter. Let .(.) be a complex-valued function of the real variable . such that .(.). is abolutely integrable over 0 < . < ∞, where . is a real number. Then the Laplace transform of .(.), . ≥ 0, is defined as . where . = . + .. The Laplace transform defined by (1) has the followi
30#
發(fā)表于 2025-3-26 19:28:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松溪县| 云阳县| 班玛县| 宝应县| 固镇县| 县级市| 仲巴县| 江山市| 民县| 南充市| 冀州市| 民丰县| 皋兰县| 新田县| 宁明县| 南汇区| 丰镇市| 东兰县| 仁寿县| 霞浦县| 武义县| 娄烦县| 修文县| 佛山市| 朝阳县| 文化| 尼勒克县| 郁南县| 芮城县| 涞源县| 双峰县| 潞城市| 留坝县| 长沙县| 丹阳市| 沅江市| 和田市| 长兴县| 天峨县| 体育| 和顺县|