找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity, Generalized Monotonicity: Recent Results; Recent Results Jean-Pierre Crouzeix,Juan-Enrique Martinez-Legaz,M Book 199

[復(fù)制鏈接]
查看: 46637|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:56:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results
副標(biāo)題Recent Results
編輯Jean-Pierre Crouzeix,Juan-Enrique Martinez-Legaz,M
視頻videohttp://file.papertrans.cn/383/382194/382194.mp4
叢書名稱Nonconvex Optimization and Its Applications
圖書封面Titlebook: Generalized Convexity, Generalized Monotonicity: Recent Results; Recent Results Jean-Pierre Crouzeix,Juan-Enrique Martinez-Legaz,M Book 199
描述A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo- metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man- agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in
出版日期Book 19981st edition
關(guān)鍵詞complementarity; derivatives; duality; equilibrium; inequality; Mathematica; Optimality Conditions; optimiz
版次1
doihttps://doi.org/10.1007/978-1-4613-3341-8
isbn_softcover978-1-4613-3343-2
isbn_ebook978-1-4613-3341-8Series ISSN 1571-568X
issn_series 1571-568X
copyrightKluwer Academic Publishers 1998
The information of publication is updating

書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results影響因子(影響力)




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results影響因子(影響力)學(xué)科排名




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results網(wǎng)絡(luò)公開度




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results被引頻次




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results被引頻次學(xué)科排名




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results年度引用




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results年度引用學(xué)科排名




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results讀者反饋




書目名稱Generalized Convexity, Generalized Monotonicity: Recent Results讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:34:37 | 只看該作者
Generalized Convexity, Generalized Monotonicity: Recent ResultsRecent Results
地板
發(fā)表于 2025-3-22 05:38:31 | 只看該作者
Jean-Pierre Crouzeix,Juan-Enrique Martinez-Legaz,M
5#
發(fā)表于 2025-3-22 08:55:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:15:19 | 只看該作者
Are Generalized Derivatives Sseful for Generalized Convex Functions?f Martínez-Legaz-Sach, Penot-Volle, Thach. We complete this list by some new proposals. We compare these specific subdifferentials to some all-purpose subdifferentials used in nonsmooth analysis. We give some hints about their uses. We also point out links with duality theories.
7#
發(fā)表于 2025-3-22 20:12:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:33:06 | 只看該作者
Simplified Global Optimality Conditions in Generalized Conjugation Theoryons on a metric space. Moreover, by assuming some topological structure on the set ., we obtain the nonemptiness of the subdifferential of any proper l.s.c. function with respect to the family Ф of the continuous ones.
9#
發(fā)表于 2025-3-23 04:18:18 | 只看該作者
10#
發(fā)表于 2025-3-23 07:27:09 | 只看該作者
Combining Theory with Practice,f Martínez-Legaz-Sach, Penot-Volle, Thach. We complete this list by some new proposals. We compare these specific subdifferentials to some all-purpose subdifferentials used in nonsmooth analysis. We give some hints about their uses. We also point out links with duality theories.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安乡县| 琼结县| 石泉县| 会东县| 汕尾市| 柘城县| 济源市| 鸡泽县| 石楼县| 寿光市| 乾安县| 高州市| 玛纳斯县| 萨嘎县| 闸北区| 儋州市| 嘉义县| 阿拉善盟| 镇原县| 环江| 西青区| 鄂州市| 饶平县| 洛南县| 汾西县| 锡林浩特市| 灵山县| 绵阳市| 余庆县| 南昌市| 永城市| 南丰县| 明水县| 遵化市| 长宁县| 韶关市| 孝昌县| 营口市| 汪清县| 临西县| 六枝特区|