找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Vector Optimization; Shashi Kant Mishra,Shou-Yang Wang,Kin Keung Lai Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 劉興旺
21#
發(fā)表于 2025-3-25 06:03:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:21:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:38:34 | 只看該作者
978-3-642-09930-4Springer-Verlag Berlin Heidelberg 2009
24#
發(fā)表于 2025-3-25 17:16:39 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:48 | 只看該作者
https://doi.org/10.1007/978-3-540-85671-9Duality; Generalized Convexity; Kuhn-Tucker Conditions; Mond-Weir type Duality; Multiobjective Programmi
26#
發(fā)表于 2025-3-26 02:01:39 | 只看該作者
Shashi Kant Mishra,Shou-Yang Wang,Kin Keung LaiThe reader will come to know about the present status of the research in this hot area of research field.The reader does not have to consult various research papers from different journals.Will provid
27#
發(fā)表于 2025-3-26 07:46:11 | 只看該作者
https://doi.org/10.1007/978-0-387-21636-2Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
28#
發(fā)表于 2025-3-26 11:50:25 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:53 | 只看該作者
Generalized Type I and Related Functions,Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
30#
發(fā)表于 2025-3-26 16:59:30 | 只看該作者
Optimality Conditions,In this chapter, we study optimality conditions for several mathematical programs involving type-I and other related functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东海县| 融水| 西畴县| 洛扎县| 于田县| 潼关县| 赣榆县| 杭锦旗| 嘉荫县| 林口县| 黄梅县| 垫江县| 柘荣县| 泽州县| 手游| 宁明县| 淳安县| 乌鲁木齐县| 古田县| 丘北县| 沿河| 阳谷县| 甘泉县| 东宁县| 花垣县| 建湖县| 永丰县| 太保市| 桂东县| 繁峙县| 桓台县| 永善县| 手游| 城市| 天等县| 保山市| 云龙县| 屏东县| 鞍山市| 临沂市| 绥滨县|