找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Generalized Monotonicity; Proceedings of the 6 Nicolas Hadjisavvas,Juan Enrique Martínez-Legaz,Je Conference proc

[復(fù)制鏈接]
樓主: deliberate
11#
發(fā)表于 2025-3-23 12:52:43 | 只看該作者
Representation of a Polynomial Function as a Difference of Convex Polynomials, with an Applicationt least one global minimum. To deal with this problem, it is useful to have a convex difference representation of all the functions involved, as this allows for employing so-called d.c. optimization techniques..Procedures that permit the calculation of the polynomial convex difference representation
12#
發(fā)表于 2025-3-23 15:02:24 | 只看該作者
13#
發(fā)表于 2025-3-23 21:42:50 | 只看該作者
Generalized Convexity for Unbounded Sets: The Enlarged Spacee, by adjoining to the ordinary n-dimensional space “improper points” defined by directions, and developed a theory of convexity in such a space. Later the second author introduced a new model for the enlarged space, suitable for applying tools from the theory of cones, and closely related to the mo
14#
發(fā)表于 2025-3-23 22:16:27 | 只看該作者
A Note on Minty Variational Inequalities and Generalized Monotonicitylities. In particular, it is shown that the Minty variational inequality problem derived from a map . defined on a convex domain is solvable on any nonempty, compact, and convex subdomain if and only if . is properly quasimonotone.
15#
發(fā)表于 2025-3-24 05:15:39 | 只看該作者
16#
發(fā)表于 2025-3-24 08:56:40 | 只看該作者
https://doi.org/10.1007/978-3-7091-8284-0is. The objective is to deduce theoretical properties that permit to develop algorithms in order to derive efficient points for the analyzed problems. In particular, we study the application of properties to certain biobjective problems.
17#
發(fā)表于 2025-3-24 10:58:16 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:13 | 只看該作者
Abner Louis Notkins,Michael B. A. Oldstoneallows for employing so-called d.c. optimization techniques..Procedures that permit the calculation of the polynomial convex difference representation of any polynomial are presented and analyzed here, and an application is made to a real problem whose functions are polynomials of degrees up to four.
19#
發(fā)表于 2025-3-24 21:05:28 | 只看該作者
Minimization of the Sum of Several Linear Fractional Functionst approximate algorithm for rank-3 problems, generalized convex multiplicative programming approach and branch and bound algorithm using piecewise convex underestimating function. We will show that we are now able to obtain a globally optimal solution for up to rank-10 problems in a practical amount of time.
20#
發(fā)表于 2025-3-24 23:44:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 上林县| 岳普湖县| 文水县| 兰溪市| 五寨县| 改则县| 色达县| 阳高县| 昌乐县| 克什克腾旗| 保山市| 大港区| 林甸县| 荆州市| 千阳县| 玉龙| 罗平县| 太保市| 和龙市| 连山| 文安县| 商丘市| 万安县| 五常市| 衡阳市| 麻城市| 长寿区| 日喀则市| 鹤庆县| 雷波县| 长寿区| 德清县| 南漳县| 集贤县| 金昌市| 红原县| 岑巩县| 九龙坡区| 平度市| 广德县|