找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Theory of Leibniz Algebras; Leonid Kurdachenko,Oleksandr Pypka,Igor Subbotin Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
查看: 50258|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:01:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱General Theory of Leibniz Algebras
編輯Leonid Kurdachenko,Oleksandr Pypka,Igor Subbotin
視頻videohttp://file.papertrans.cn/383/382136/382136.mp4
概述Summarizes results and methods used in Leibniz algebras and also shows new perspective horizons in algebra theory.Discusses numerous interesting and promising results in the area of Leibniz algebras f
叢書名稱Synthesis Lectures on Mathematics & Statistics
圖書封面Titlebook: General Theory of Leibniz Algebras;  Leonid Kurdachenko,Oleksandr Pypka,Igor Subbotin Book 2024 The Editor(s) (if applicable) and The Autho
描述.This book discusses many interesting results have been obtained in Leibniz algebras over the past two decades. The authors not only summarize recent results and methods successfully used in Leibniz algebras, but also show new prospective horizons. Any mathematical theories have a number of natural problems that arise in the process of its development, and these problems quite often have analogues in other areas such as differential geometry, homological algebra, classical algebraic topology, noncommutative geometry, etc. With this in mind the authors describe the general structure of Leibniz algebras that have already been discovered. This approach allows readers to?see which parts of the theory should be developed further and also shows the significant differences of Leibniz algebras from Lie algebras. Recent results that constitute the naturally evolving general theory of the subject are then explored..
出版日期Book 2024
關(guān)鍵詞Algebra; Leibniz Algebras; Leibniz Algebra Theory; Non-commutative Algebra; Lie Algebra and Generalizati
版次1
doihttps://doi.org/10.1007/978-3-031-58148-9
isbn_softcover978-3-031-58150-2
isbn_ebook978-3-031-58148-9Series ISSN 1938-1743 Series E-ISSN 1938-1751
issn_series 1938-1743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱General Theory of Leibniz Algebras影響因子(影響力)




書目名稱General Theory of Leibniz Algebras影響因子(影響力)學(xué)科排名




書目名稱General Theory of Leibniz Algebras網(wǎng)絡(luò)公開度




書目名稱General Theory of Leibniz Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱General Theory of Leibniz Algebras被引頻次




書目名稱General Theory of Leibniz Algebras被引頻次學(xué)科排名




書目名稱General Theory of Leibniz Algebras年度引用




書目名稱General Theory of Leibniz Algebras年度引用學(xué)科排名




書目名稱General Theory of Leibniz Algebras讀者反饋




書目名稱General Theory of Leibniz Algebras讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:03 | 只看該作者
General Theory of Leibniz Algebras978-3-031-58148-9Series ISSN 1938-1743 Series E-ISSN 1938-1751
板凳
發(fā)表于 2025-3-22 00:36:34 | 只看該作者
https://doi.org/10.1007/978-3-031-58148-9Algebra; Leibniz Algebras; Leibniz Algebra Theory; Non-commutative Algebra; Lie Algebra and Generalizati
地板
發(fā)表于 2025-3-22 06:02:40 | 只看該作者
https://doi.org/10.1007/3-540-27720-XThis chapter introduces the concepts of Leibniz algebras, delineates their initial basic properties, considers their basic subalgebras and some objects related to Leibniz algebras, and provides a description of one-generator Leibniz algebras.
5#
發(fā)表于 2025-3-22 11:04:57 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:09 | 只看該作者
7#
發(fā)表于 2025-3-22 19:41:44 | 只看該作者
Application of Neural Networks,This chapter describes the algebras of derivations of one-generator Leibniz algebras.
8#
發(fā)表于 2025-3-22 21:53:30 | 只看該作者
9#
發(fā)表于 2025-3-23 01:34:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:24:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶县| 崇阳县| 电白县| SHOW| 莱州市| 厦门市| 冀州市| 泸定县| 曲松县| 恭城| 留坝县| 日照市| 赣州市| 无极县| 兴山县| 纳雍县| 溧水县| 武威市| 嵊泗县| 红河县| 石景山区| 三亚市| 曲沃县| 安岳县| 黄骅市| 台州市| 惠州市| 灵武市| 芮城县| 汝州市| 盐源县| 漾濞| 乐清市| 咸宁市| 揭西县| 小金县| 博爱县| 宁阳县| 朝阳市| 海盐县| 扎赉特旗|