找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity Without Calculus; A Concise Introducti Jose Natario Book 2011 Springer-Verlag Berlin Heidelberg 2011 Black Holes geometr

[復(fù)制鏈接]
樓主: 獨(dú)裁者
21#
發(fā)表于 2025-3-25 04:29:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:00 | 只看該作者
Minkowski Geometry,erval, which physically is just the time measured by a free particle travelling between the two events, is very different from the Euclidean distance: the length of one side of a triangle is always larger than the sum of the lengths of the other two (twin paradox), and lines are the curves with maximum length (generalized twin paradox).
23#
發(fā)表于 2025-3-25 13:15:54 | 只看該作者
Cosmology,sequences of the Einstein equation, which in the FLRW models reduces to the Friedmann equations for the density and radius of the Universe. We see how these equations imply that the Universe originated in a Big Bang, and will, according to the currently accepted cosmological parameters, expand forever.
24#
發(fā)表于 2025-3-25 17:47:31 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:04 | 只看該作者
Gravity,he gravitational field of a spherically symmetric body, and explain how these equations determine the motion given initial conditions. As an example, we compute the speed of a circular orbit, and use it to estimate the conditions under which we should expect relativistic corrections to Newtonian gravity.
26#
發(fā)表于 2025-3-26 00:29:27 | 只看該作者
27#
發(fā)表于 2025-3-26 05:26:44 | 只看該作者
28#
發(fā)表于 2025-3-26 11:31:47 | 只看該作者
29#
發(fā)表于 2025-3-26 16:41:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:15:44 | 只看該作者
General Relativity,e observation that curved space–time is locally flat, and implies that free-falling particles must move along geodesics (and light rays along null geodesics) just like in flat Minkowski space–time. Given the matter distribution, the space–time metric can be found by solving the Einstein equation, whose nature we describe.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泊头市| 利川市| 且末县| 凤庆县| 加查县| 张家界市| 莱阳市| 永嘉县| 天镇县| 江油市| 赣州市| 宝坻区| 苏州市| 文山县| 清徐县| 丹阳市| 修武县| 嘉义市| 新竹市| 福州市| 兴海县| 宜春市| 密山市| 洮南市| 开封县| 九龙坡区| 包头市| 宁德市| 南岸区| 宝鸡市| 乌兰县| 浑源县| 灵寿县| 苗栗市| 丹阳市| 甘南县| 定襄县| 广西| 尖扎县| 绿春县| 华坪县|