找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity; Norbert Straumann Textbook 2013Latest edition Springer Science+Business Media Dordrecht 2013 Einstein’s Field Equation

[復(fù)制鏈接]
樓主: Impacted
11#
發(fā)表于 2025-3-23 13:05:19 | 只看該作者
Differentiable Manifoldsoncepts connected with the notion of a differentiable manifold. We give two definitions of a differentiable manifold. The standard one starts with a topological space. One can alternatively begin with a set and introduce the topology with a given atlas. This approach is not only practical to constru
12#
發(fā)表于 2025-3-23 15:15:32 | 只看該作者
Tangent Vectors, Vector and Tensor Fieldsfinitions. On the basis this notion vector fields are introduced, together with their Lie algebra structure. In the subsection on tensor fields, the reader is assumed to be familiar with some basic material of multilinear algebra. Important examples of tensor fields are (pseudo-) Riemannian metrics
13#
發(fā)表于 2025-3-23 21:03:18 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:23 | 只看該作者
Differential Forms repeating some algebraic preliminaries on exterior algebras. Then exterior differential forms and the associated exterior algebra are introduced. On this we study general properties of derivations and antiderivations. The most important one is Cartan’s exterior derivative. Poincaré’s Lemma is also
15#
發(fā)表于 2025-3-24 05:25:52 | 只看該作者
16#
發(fā)表于 2025-3-24 08:43:45 | 只看該作者
Some Details and Supplementslong maps and their induced covariant derivatives, because this is used at various places in the book. For a convenient formulation we introduce the tangent bundle of a manifold, the prototype of a vector bundle. Applications to variations of curves will illustrate the usefulness of the concepts.
17#
發(fā)表于 2025-3-24 13:16:02 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:38:09 | 只看該作者
Interpreting the Chemical Residues Storyly to the kinematical framework of GR and determines—suitable interpreted—the coupling of physical systems to external gravitational fields. This is discussed in detail in the present chapter. Although Einstein’s Equivalence Principle (EEP) is somewhat vague, since it is not entirely clear what is m
20#
發(fā)表于 2025-3-25 00:42:34 | 只看該作者
https://doi.org/10.1007/3-540-30571-8r, we shall first give a simple physical motivation for the field equation and will then show that it is determined by only a few natural requirements (Lovelock theorem), with two coupling constants. One is just Newtons gravitational constant, and the other is the much discussed cosmological constan
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 18:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河源市| 湘乡市| 泸州市| 安平县| 长丰县| 广安市| 池州市| 涞水县| 澎湖县| 班戈县| 连江县| 社会| 宜兰县| 嘉峪关市| 和静县| 云阳县| 万源市| 门源| 安陆市| 泽普县| 黄石市| 雅江县| 航空| 古田县| 盈江县| 晋州市| 修武县| 灌阳县| 玉门市| 颍上县| 赤壁市| 姚安县| 轮台县| 两当县| 精河县| 彩票| 昌吉市| 敦煌市| 紫阳县| 石嘴山市| 彭泽县|