找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Inequalities 5; 5th International Co Wolfgang Walter Book 1987 Birkh?user Verlag Basel 1987 Differentialgleichung.manifold.number t

[復(fù)制鏈接]
查看: 16579|回復(fù): 55
樓主
發(fā)表于 2025-3-21 16:58:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱General Inequalities 5
副標(biāo)題5th International Co
編輯Wolfgang Walter
視頻videohttp://file.papertrans.cn/383/382069/382069.mp4
叢書(shū)名稱International Series of Numerical Mathematics
圖書(shū)封面Titlebook: General Inequalities 5; 5th International Co Wolfgang Walter Book 1987 Birkh?user Verlag Basel 1987 Differentialgleichung.manifold.number t
出版日期Book 1987
關(guān)鍵詞Differentialgleichung; manifold; number theory; optimization
版次1
doihttps://doi.org/10.1007/978-3-0348-7192-1
isbn_softcover978-3-0348-7194-5
isbn_ebook978-3-0348-7192-1Series ISSN 0373-3149 Series E-ISSN 2296-6072
issn_series 0373-3149
copyrightBirkh?user Verlag Basel 1987
The information of publication is updating

書(shū)目名稱General Inequalities 5影響因子(影響力)




書(shū)目名稱General Inequalities 5影響因子(影響力)學(xué)科排名




書(shū)目名稱General Inequalities 5網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱General Inequalities 5網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱General Inequalities 5被引頻次




書(shū)目名稱General Inequalities 5被引頻次學(xué)科排名




書(shū)目名稱General Inequalities 5年度引用




書(shū)目名稱General Inequalities 5年度引用學(xué)科排名




書(shū)目名稱General Inequalities 5讀者反饋




書(shū)目名稱General Inequalities 5讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:05:14 | 只看該作者
An Even Order Search Problemd differences,whose signs are then used to locate the zeros. Of central importance is the particular rule (or .) by which these n points are selected.In this paper, it is shown how analysis of a maximal solution of a Booth inequality determines the . strategy for k=14.
板凳
發(fā)表于 2025-3-22 01:51:29 | 只看該作者
Parallel Tree Search for Satisfiability,orm a*p ∈ λ ? a ∈ λ, provided that the tauberian condition a ∈ ?. holds. While (for λ = bv) this already includes all previous results, the theorem can be further improved for semi-infinite sequences.
地板
發(fā)表于 2025-3-22 07:24:04 | 只看該作者
Tauberian-Type Results for Convolution of Sequencesorm a*p ∈ λ ? a ∈ λ, provided that the tauberian condition a ∈ ?. holds. While (for λ = bv) this already includes all previous results, the theorem can be further improved for semi-infinite sequences.
5#
發(fā)表于 2025-3-22 10:09:06 | 只看該作者
6#
發(fā)表于 2025-3-22 13:23:33 | 只看該作者
https://doi.org/10.1007/978-1-4612-4664-0with x. ≥ 0 (1 ≤ i ≤ N), ∑ x. = a leads naturally to a dynamic programming approach. For the case N ↗ ∞, we prove, roughly speaking, that in case of homogeneity the “maximizing sequences” (a., a., …) of the functions in question tend to be close to geometric progressions.
7#
發(fā)表于 2025-3-22 19:41:48 | 只看該作者
8#
發(fā)表于 2025-3-22 21:56:24 | 只看該作者
Regular Matrices over an Incline,typified by.under appropriate conditions. The products on the left are replaced, in this paper, by geometric means with more general weights, and the factors m. on both sides by factors r. for suitably small r. Some inequalities having an analogous character are first discussed, since they led the w
9#
發(fā)表于 2025-3-23 02:24:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:40:19 | 只看該作者
,(,, 2)—Rotational Steiner Triple Systems,(x) there is a non-negative weight function V(x) which is finite a.e. and the fractional maximal function operator is bounded from L.(Vdμ) to L.(Udμ). The dual problem and the analogous problems for non-isotropic fractional integrals are also solved.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安阳县| 任丘市| 绵阳市| 蕉岭县| 神木县| 黄龙县| 宜川县| 定南县| 和田县| 白水县| 呼和浩特市| 九龙坡区| 利川市| 上蔡县| 分宜县| 保定市| 扶沟县| 大邑县| 桦南县| 丹巴县| 肥西县| 台前县| 竹北市| 临安市| 淅川县| 林甸县| 开封市| 五台县| 乌恰县| 望都县| 昆山市| 南昌县| 宁陵县| 长岛县| 平南县| 扶风县| 柳河县| 高淳县| 枣庄市| 城市| 磴口县|