找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gelfand Triples and Their Hecke Algebras; Harmonic Analysis fo Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil Book 2020 Springer Nature

[復(fù)制鏈接]
樓主: tornado
11#
發(fā)表于 2025-3-23 10:57:59 | 只看該作者
12#
發(fā)表于 2025-3-23 17:33:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:37:06 | 只看該作者
Gelfand Triples and Their Hecke Algebras978-3-030-51607-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
14#
發(fā)表于 2025-3-24 01:20:07 | 只看該作者
DNA, RNA und IHRE Amplifikation,plane (see [Terras, Fourier analysis on finite groups and applications. London mathematical society student texts, vol 43. Cambridge University Press, Cambridge, 1999, Chapters 19, 20, 21, and 23]). We suppose that . is an odd prime power (cf. Sect. .) and we denote by . (respectively .) the multiplicative characters of . (respectively .).
15#
發(fā)表于 2025-3-24 02:42:01 | 只看該作者
16#
發(fā)表于 2025-3-24 09:46:42 | 只看該作者
17#
發(fā)表于 2025-3-24 12:51:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:05:20 | 只看該作者
https://doi.org/10.1007/978-1-4757-9424-3Let . be a finite group and .?≤?. a subgroup. Recalling the equality between the induced representation . and the permutation representation (., .(.).), (.) yields a ?-algebra isomorphism between the algebra of bi-.-invariant functions on . and the commutant of the representation obtained by inducing to . the trivial representation of ..
19#
發(fā)表于 2025-3-24 22:33:01 | 只看該作者
https://doi.org/10.1007/978-3-662-61707-6In this section we consider triples of the form (., ., .) in the particular case when the subgroup .?≤?. is normal.
20#
發(fā)表于 2025-3-25 02:16:27 | 只看該作者
Preliminaries,In this chapter, we fix notation and recall some basic facts on linear algebra and representation theory of finite groups that will be used in the proofs of several results in the sequel.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元阳县| 泰来县| 内乡县| 舞阳县| 扎鲁特旗| 苏尼特右旗| 乌什县| 绍兴市| 托克托县| 荣成市| 嘉祥县| 万年县| 康保县| 鄯善县| 渝中区| 石狮市| 武安市| 安徽省| 长阳| 获嘉县| 密山市| 凤凰县| 本溪市| 犍为县| 睢宁县| 团风县| 旅游| 龙泉市| 皋兰县| 凌源市| 洛阳市| 六枝特区| 常德市| 布尔津县| 武冈市| 甘洛县| 静宁县| 社会| 南皮县| 石首市| 东兰县|